Autoimmunity Micro 204

> Qizhi Tang, PhD 11/16/2018

Themes

1. Overview:

Definition, epidemiology, classification

2. Effector mechanisms autoimmune disease

- a. Antibody-mediated and T cell-mediated
- b. Autoantigens

3. Etiology of autoimmune diseases

- a. Genetics
- b. Environment

4. Therapeutic developments

Autoimmunity & autoimmune diseases

Definition: immune response against self (auto-) antigen

 Most people have "autoimmunity" - immune recognition of self, but majority don't have "autoimmune disease" – immune damage of self

General principles:

- Significant health burden, affect 5% of population and rising
- Multiple factors contribute to autoimmunity, including genetic predisposition, infections
- Fundamental problem is the failure of self-tolerance

Challenges:

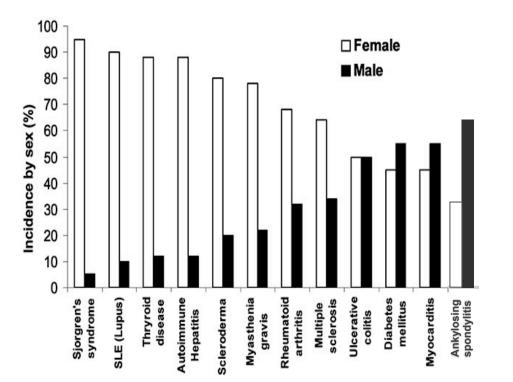
 Many target antigens, heterogeneous disease manifestations, disease usually presents long after initiation

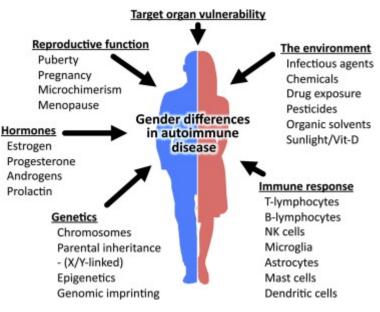
Examples of autoimmune diseases

Organ-specific

- Type 1 diabetes
- Goodpasture's syndrome
- Multiple sclerosis
- Graves disease
- Hashimoto's thyroiditis
- Autoimmune pernicious anemia
- Autoimmune Addison's disease
- Vitiligo
- Myasthenia gravis

Systemic


- Rheumatoid arthritis
- Scleroderma
- Systemic lupus erythematosis
- Sjogren's syndrome
- Hashimoto's thyroiditis
- Polymyositis


Diseases of hyperactive immune system (autoinflammatory diseases)

- Inflammatory bowel diseases
 - ♦ Crohn's disease
 - ♦ Ulcerative colitis

- Celiac disease
- Asthma
- Eczema

Prevalence by gender

Whitacre CC. Sex differences in autoimmune disease. Nature immunology. 2001 1;2(9):777-80. Zandman-Goddard G, Peeva E, Shoenfeld Y. Gender and autoimmunity. Autoimmunity reviews. 2007 6(6): 366-72.

Ngo ST, Steyn FJ, McCombe PA. Gender differences in autoimmune disease. Frontiers in neuroendocrinology.

Inheritance and environment – twin studies

Disease	MZ twin concordance	DZ twin concordance
Type 1 diabetes	13-47.4% (30%)	3.8-11.6% (5.8%)
Multiple sclerosis	0-50% (16.7%)	0-16.7% (2.7%)
Celiac disease	60-75%	9.1-11%
Autoimmune thyroid disease	17-22%	0-1.9%
Psoriasis	35-64%	10-14%
SLE	11-40%	0-4%
Rheumatoid arthritis	0-21% (14%)	0-8.8% (3.5%)

- Evidence of genetic influence: concordance is uniformly higher between monozygotic twins than between dizygotic twins in all autoimmune diseases studied
- Evidence of non-genetic influence: risk of developing the same autoimmune disease by sibling with a diseases twin is never 100%
- Relative contribution by genetics and environment differ depending diseases : concordance rates between MZ twins differ for different diseases

Bogdanos, Dimitrios P., et al. "Twin studies in autoimmune disease: genetics, gender and environment." Journal of autoimmunity 38.2 (2012): J156-J169.

Classification of autoimmune diseases

- Broadly separated by the type of effector mechanism (similar to hypersensitivity classification scheme)
- Three classes:
 - **Type II:** Antibody against cell-surface antigen or matrix antigens
 - Type III: Immune-complex disease
 - **Type IV:** T cell-mediated disease

Mechanisms of autoimmune diseases

Type II: Antibody-mediated diseases

Autoimmune disease	Autoantigen	Consequence	
Antibody against	t cell-surface or matrix a	antigens (type II)	
Autoimmune hemolytic anemia	Rh blood group antigens, I antigen	Destruction of red blood cells by complement and phagocytes anemia	A de
Autoimmune thrombocytopenia purpura	Platelet integrin gpllb:Illa	Abnormal bleeding	C
Goodpasture's syndrome	Non-collagenous domain of basement membrane collagen type IV	Glomerulonephritis, pulmonary hemorrhage	C d
Pemphigus vulgaris	Epidermal cadherin	Blistering of skin	
Acute rheumatic fever	Streptococcal cell wall antigens. Antibodies cross-react with cardiac muscle	Arthritis, myocarditis, late scarring of heart valves	
Graves' disease	Thyroid-stimulating hormone receptor	Hyperthyroidism	A aı
Myasthenia gravis	Acetylcholine receptor	Progressive weakness	В
Insulin-resistant diabetes	Insulin receptor (antagonist)	Hyperglycemia, ketoacidosis	ar
Hypoglycemia	Insulin receptor (agonist)	Hypoglycemia	

dydent xicity

ement tion

stic dies

ng dies

Figure 11-1 part 1 of 3 The Immune System, 2/e (© Garland Science 2005)

Graves' disease – effect of agonistic antibody

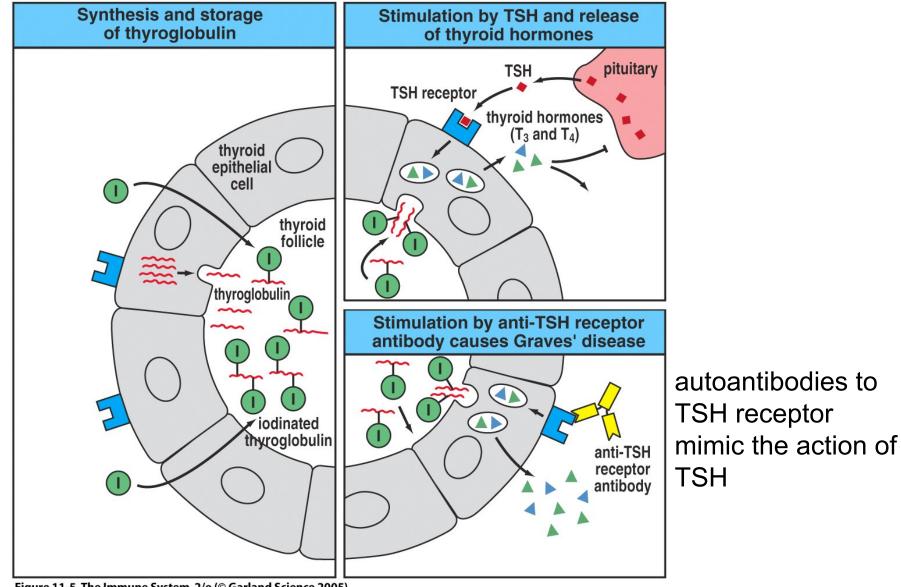


Figure 11-5 The Immune System, 2/e (© Garland Science 2005)

Graves' disease: Proof that it's antibody mediated

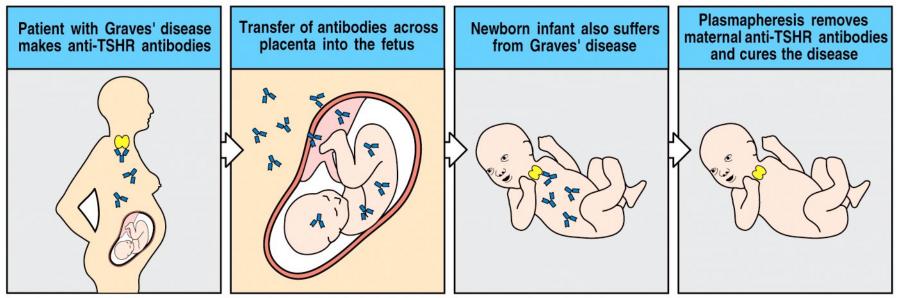
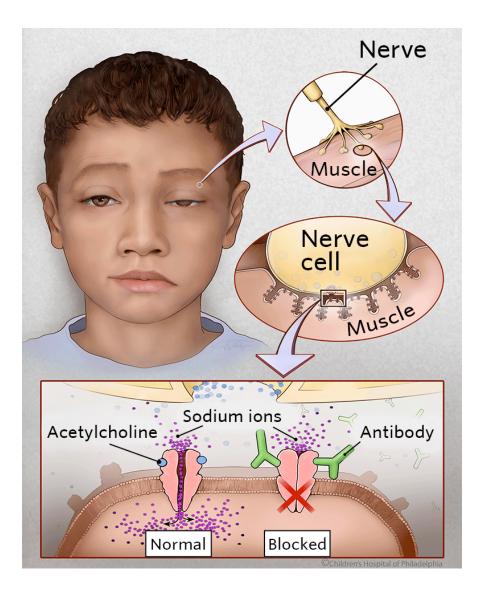



Figure 11-7 The Immune System, 2/e (© Garland Science 2005)

Myasthenia Gravis – antagonistic antibodies

autoantibodies to the acetylcholine receptor block neuromuscular transmission from cholinergic neurons to skeletal muscles

Type III: Immune-complex mediated diseases

Autoimmune disease	Autoantigen	Consequence			
Immune-complex disease (type III)					
Subacute bacterial endocarditis	Bacterial antigen	Glomerulonephritis			
Mixed essential cryoglobulinemia	Rheumatoid factor IgG complexes (with or without hepatitis C antigens)	Systemic vasculitis			
Systemic lupus erythematosus	DNA, histones, ribosomes, snRNP, scRNP	Glomerulonephritis, vasculitis, arthritis			

Figure 11-1 part 2 of 3 The Immune System, 2/e (© Garland Science 2005)

Review: Immune complex formation

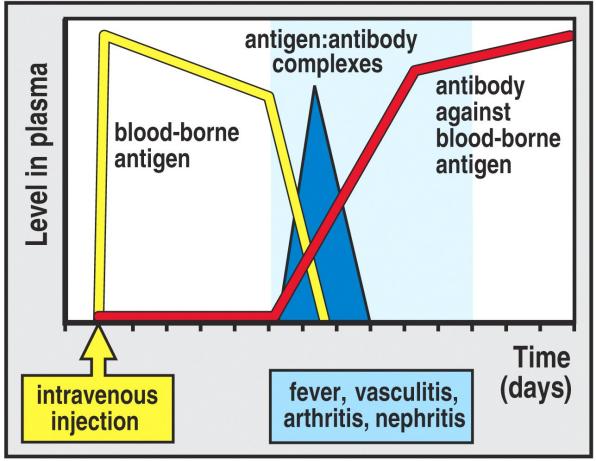
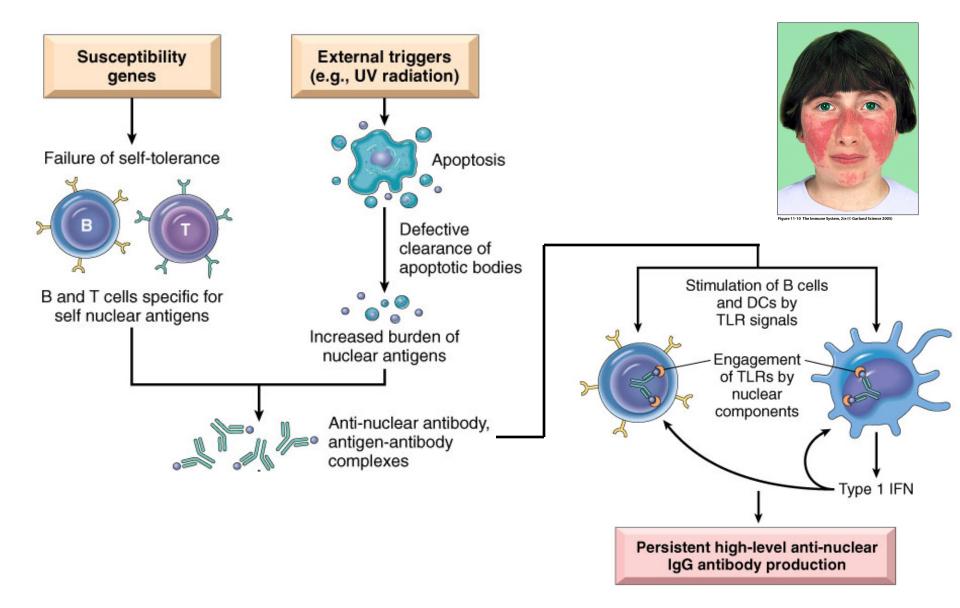
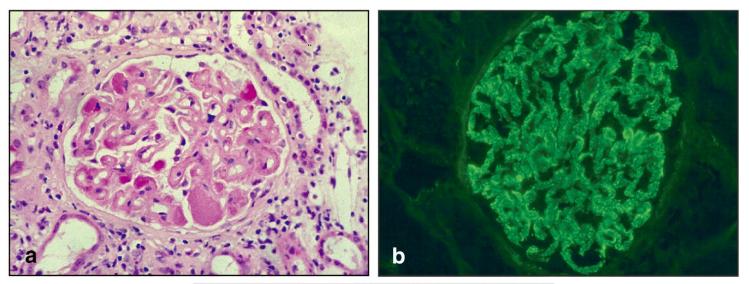
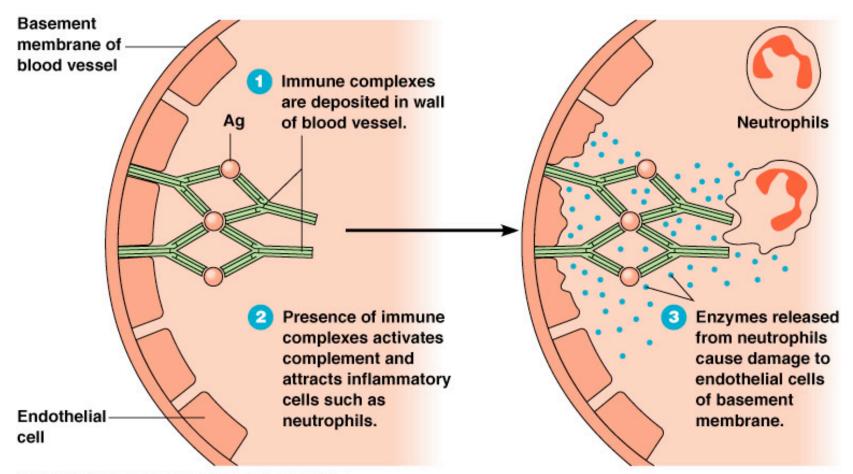
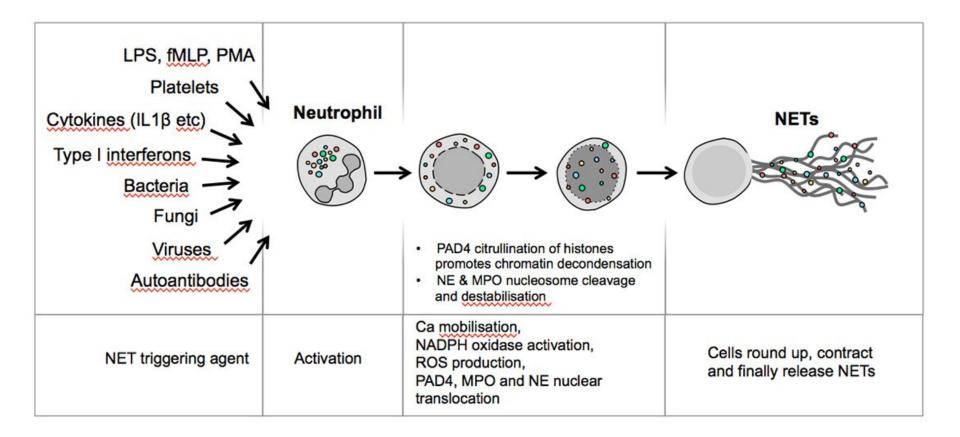



Figure 10-32 The Immune System, 2/e (© Garland Science 2005)

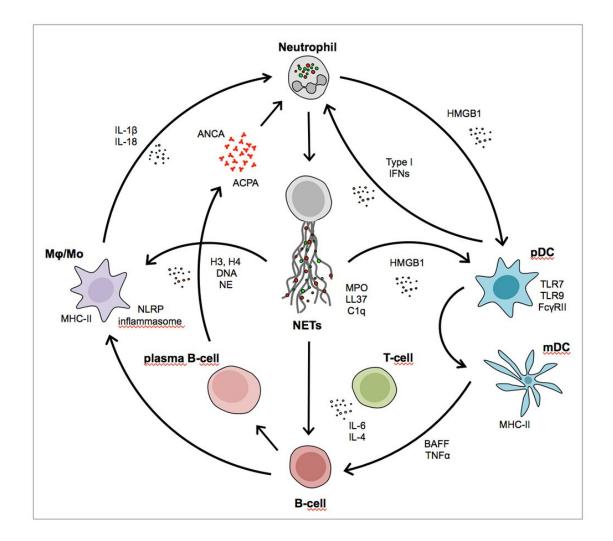
A model for the pathogenesis of SLE

SLE: immune complexes in the kidney


Figure 13-33 Immunobiology, 6/e. (© Garland Science 2005)

Tissue destruction initiated by immune complexes


Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

NETs and Ets – role in autoimmunity?

Lee, KH, et al. "Neutrophil extracellular traps (NETs) in autoimmune diseases: A comprehensive review." Autoimmunity Reviews (2017).

NETs and Ets – role in autoimmunity?

Lee, KH, et al. "Neutrophil extracellular traps (NETs) in autoimmune diseases: A comprehensive review." Autoimmunity Reviews (2017).

Type IV: T cell-mediated diseases

Autoimmune disease	Autoantigen Consequence				
T cell-mediated disease (type IV)					
Insulin-dependent diabetes mellitus	Pancreatic β -cell antigen	β -cell destruction			
Rheumatoid arthritis	Unknown synovial joint antigen	Joint inflammation and destruction			
Multiple sclerosis	Myelin basic protein, proteolipid protein	Brain degeneration. Paralysis			
Celiac disease	Gluten modified by tissue transglutaminase	Malabsorption of nutrients Atrophy of intestinal villi			

Figure 11-1 part 3 of 3 The Immune System, 2/e (© Garland Science 2005)

T cell-mediated tissue destruction

- Direct T cell cytotoxicity via CD8⁺ CTL
- Self-destruction of tissue cells induced by cytokines, eg, TNFa
- Recruitment and activation of macrophages
 leading to bystander tissue destruction
- Induction of target tissue apoptosis by the T cell membrane protein FasL

Type I diabetes: T cell-directed attack of pancreatic islet β-cells

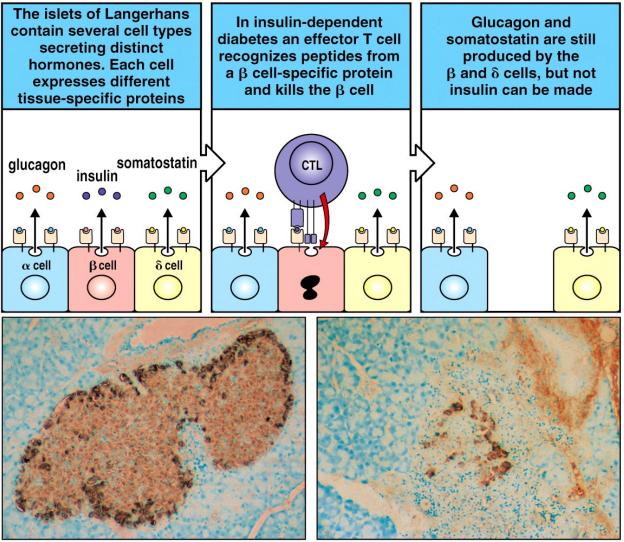
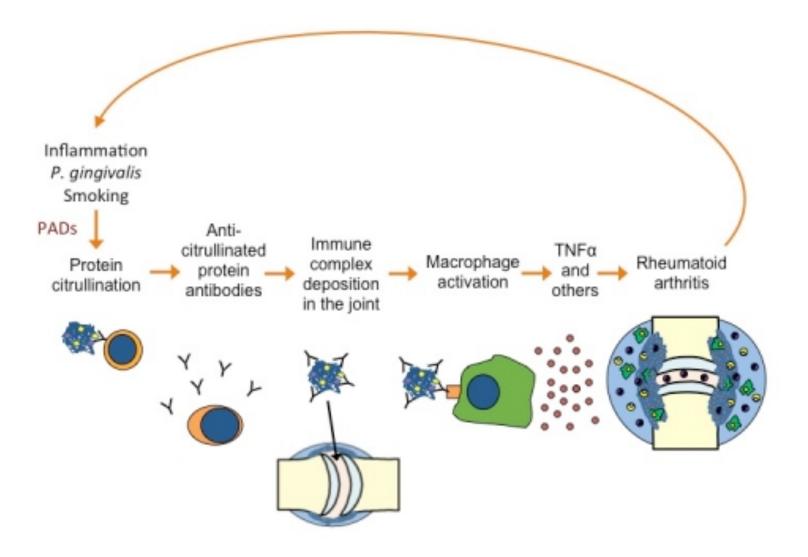
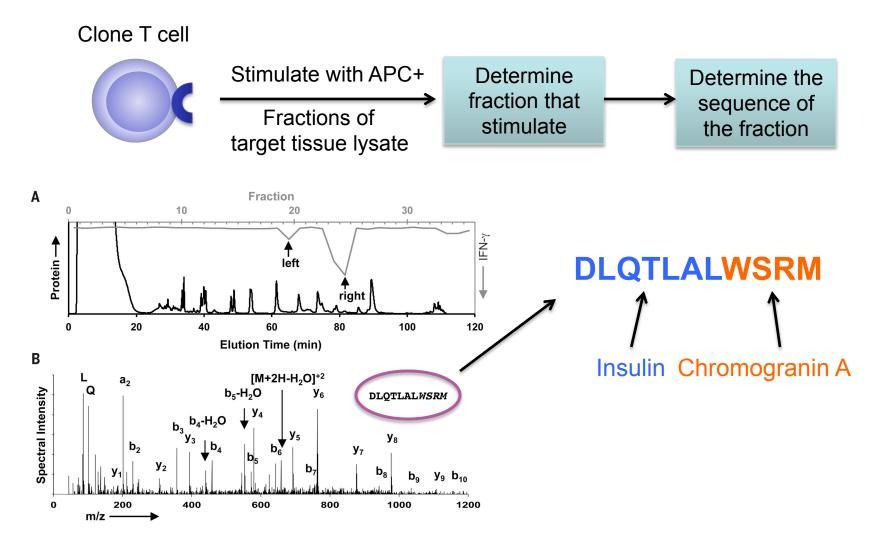




Figure 13-34 Immunobiology, 6/e. (© Garland Science 2005)

Neoantigens from post-translational modification

Identifying targeted self antigens T cell autoantigens

Delong, Thomas, et al. "Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion." Science 351.6274 (2016): 711-714.

Key concepts

- Effector mechanisms: much like those for allergic reactions and immune response to pathogens.
- Autoantigens: targeted by autoantibodies and autoreactive T cells overlap, but not identical
- **Neoantigens:** some autoantigens are formed by post-translatinal modifications triggered by inflammation, thus may not be present in primary lymphoid organ during central tolerance induction

Etiology of autoimmune diseases

Failure of self tolerance Why and how?

Mechanisms of immune tolerance

Layers of self-tolerance				
Type of tolerance	Mechanism Site of activ			
Central tolerance	Deletion Editing	Thymus Bone marrow		
Antigen segregation	Physical barrier to self-antigen access to lymphoid system	Peripheral organs (eg, thyroid, pancreas)		
Peripheral anergy	Cellular inactivation by weak signaling without co-stimulus	Secondary lymphoid tissue		
Regulatory cells	Suppression by cytokines, intercellular signals	Secondary lymphoid tissue and sites of inflammation		
Cytokine deviation	Differentiation to T _H 2 cells, limiting inflammatory cytokine secretion	Secondary lymphoid tissue and sites of inflammation		
Clonal exhaustion	Apoptosis post-activation	Secondary lymphoid tissue and sites of inflammation		

Figure 13-16 Immunobiology, 6/e. (© Garland Science 2005)

Autoimmune diseases caused by single-gene mutations

	Hereditary C1q deficiency	SPENCDI	AGS	ALPS	IPEX	APS1
Gene(s)	C1qA, C1qB, C1qC	TRAP (ACP5)	TREX1, RNaseH2 H2 (A, B, C), SAMHD1	FAS, FASLG, CASP10	FOXP3	AIRE
Inheritance	Autosomal recessive	Autosomal recessive	Autosomal recessive	Autosomal dominant, recessive, variable penetrance	X-linked	Autosomal recessive*
Autoimmune features	SLE, glomerulonephritis, angioedema, +ANAs, +RNP Abs	SLE, thrombocytopenia, hemolytic anemia	SLE, chilblains, hemolytic anemia, +ANAs	Autoimmune cytopenia	Enteropathy Type 1 diabetes	Multi-organ disease +Organ-specific autoAbs anti-IFN Abs, NALP5 Abs
Tolerance defect	Impaired clearance of apoptotic material	Activation of Type 1 interferon signaling	Activation of type 1 interferon signaling	Defective lymphocyte apoptosis	Loss of Tregs	Defective deletional tolerance
Immune defect	Innate	Innate	Innate	Adaptive	Adaptive	Adaptive

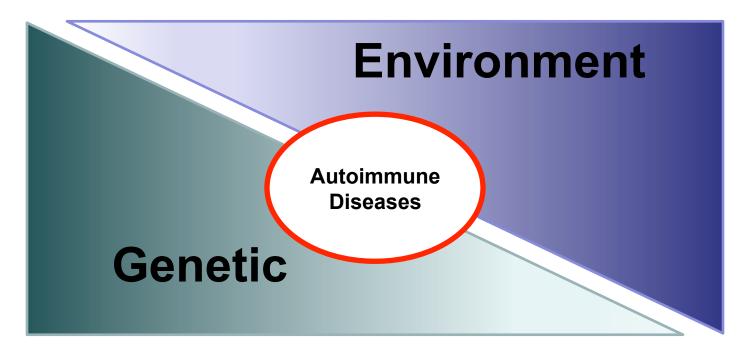
not the basis of most autoimmune diseases

Forward genetics to find causal genes of autoimmune diseases

nature

Vol 435|26 May 2005|doi:10.1038/nature03555

ARTICLES

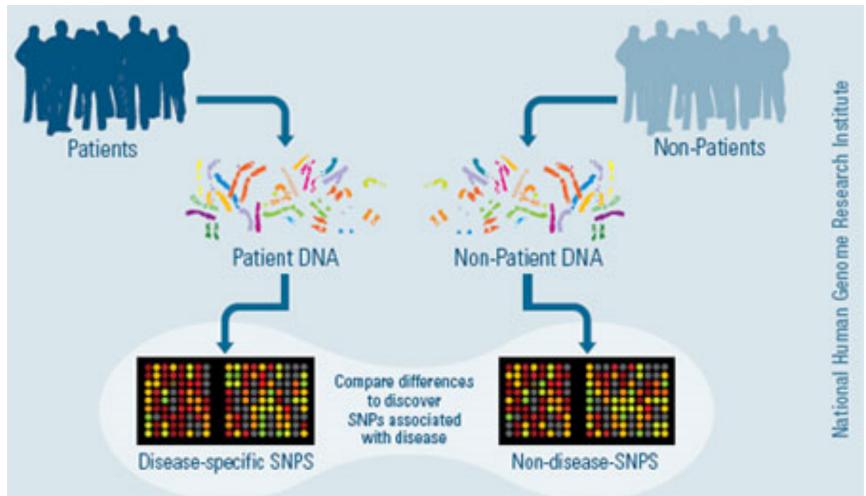

A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity

Carola G. Vinuesa¹, Matthew C. Cook², Constanza Angelucci¹, Vicki Athanasopoulos¹, Lixin Rui¹, Kim M. Hill¹, Di Yu¹, Heather Domaschenz¹, Belinda Whittle^{1,3}, Teresa Lambe⁴, Ian S. Roberts⁵, Richard R. Copley⁶, John I. Bell⁴, Richard J. Cornall⁴ & Christopher C. Goodnow^{1,3}

Searching for the causes of autoimmune diseases

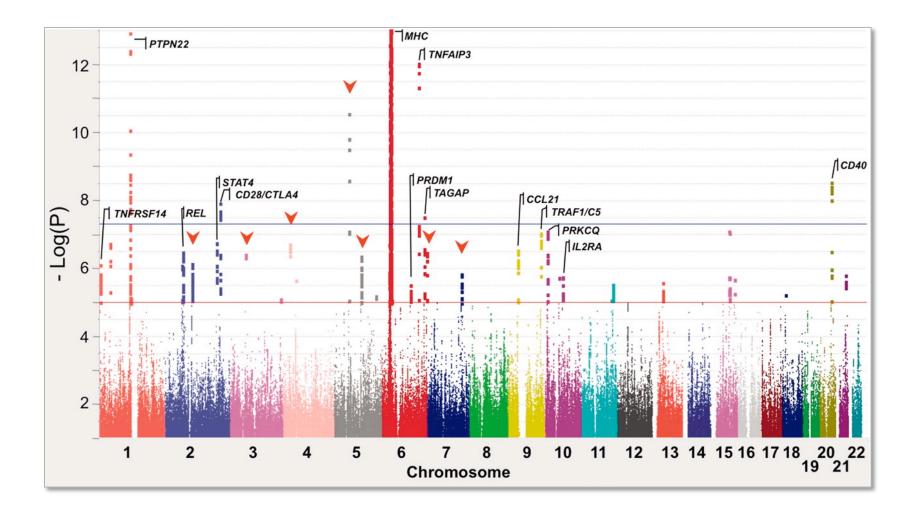
Familial

Sporatic



Genetic basis of autoimmune diseases

- Genetic predisposition of autoimmune diseases
 - Increased incidence in twins
 - Familial patterns
- Multiple genes are associated with autoimmunity
 - Most autoimmune diseases are not caused by single-gene mutations
- MHC genes
 - Major risk factor of autoimmune diseases
 - Disease-associated alleles may be found in normal individuals
- Non-MHC genes
 - Many loci identified by genomic methods, animal studies
 - Some genes are associated with multiple autoimmune diseases


Search for genes linked to autoimmune diseases - GWAS

GWAS=Genome Wide Association Study

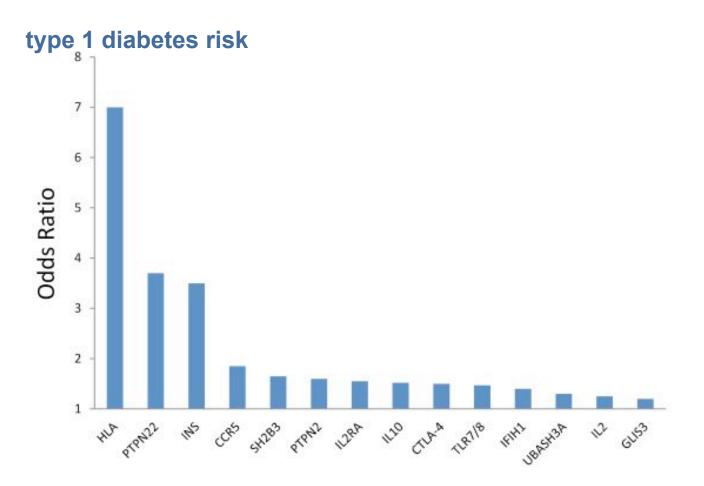
Single nucleotide polymorphism (SNP)-Chip with an array of over500,000 SNP's

An example of GWAS of RA

HLA is the strongest genetic factor for susceptibility for many autoimmune diseases

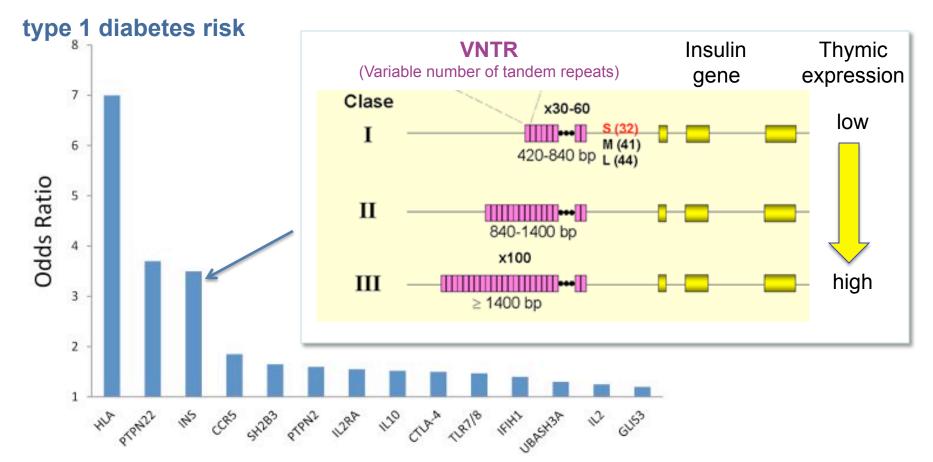
HLA-associated risk factors for autoimmune disease					
		Frequency (%)		Deletionsiele	
Disease	HLA allotype	Patients	Control	Relative risk	
Ankylosing spondylitis	B27	> 95	9	> 150	
Narcolepsy	DQ6	> 95	33	> 40	
Celiac disease	DQ2 and DQ8	95	28	30	
IDDM	DQ8 and DQ2	81	23	14	
Subacute thyroiditis	B35	70	14	14	
Multiple sclerosis	DQ6	86	33	12	
Rheumatoid arthritis	DR4	81	33	9	
Juvenile rheumatoid arthritis	DR8	38	7	8	
Psoriasis vulgaris	Cw6	87	33	7	
Addison's disease	DR3	69	27	5	
Graves' disease	DR3	65	27	4	
Myasthenia gravis	DR3	50	27	2	
IDDM	DQ6	< 0.1	33	0.02	

Figure 11-23 The Immune System, 2/e (© Garland Science 2005)


Non-HLA autoimmune disease genes

Genes	Function	Diseases
PTPN22	T and B cell receptor signaling	RA, T1D, CD
CTLA4	Transmits inhibitory signals to T cells	T1D, RA
CD2/CD58	Activation of T lymphocytes	RA, MS
IL23R	Unique component of the heterodimeric IL-23 receptor	IBD, PS, AS
IL10	Down regulates immune responses, including cytokines, MHC class II and costimulatory molecules	IBD, SLE, T1D
IL2/IL21	T cell trophic growth factors	CeD, IBD, RA, T1D
IL12B	p40 subunit common to IL-12 and IL-23	IBD, PS
IL2RA	IL-2 receptor α chain	MS, T1D
TNFAIP3	Induced by TNF and pattern recognition receptor activation; inhibits NF-кB signaling	RA, SLE, PS
TNIP1	Interacts with TNFAIP3	SLE, PS
PRDM1	Transcriptional repressor of IFN-β; induces B cell maturation	RA, SLE
BLK	B lymphoid tyrosine kinase	SLE, RA
PTPN2	T cell protein tyrosine phosphatase	IBD, T1D
NOD2	Microbial sensor in intestinal epithelial cells	Crohn's disease

Zenewicz, Lauren A., et al. "Unraveling the genetics of autoimmunity." Cell 140.6 (2010): 791-797.


Beyond GWAS

- Establish causality
- Identify mechanisms of pathogenesis

Beyond GWAS

- Establish causality
- Identify mechanisms of pathogenesis

Pugliese, A, et al. Nature genetics 15.3 (1997) 293-297 *Vafiadis, P. et al Nature genetics* 15.3 (1997) 289-293

Modeling autoimmune diseases in mice

Spontaneous models

- Non-obese diabetic (NOD) mouse model of type 1 diabetes
- NZBxNZW model of lupus
- KBxN model of rheumatoid arthritis

Induced models

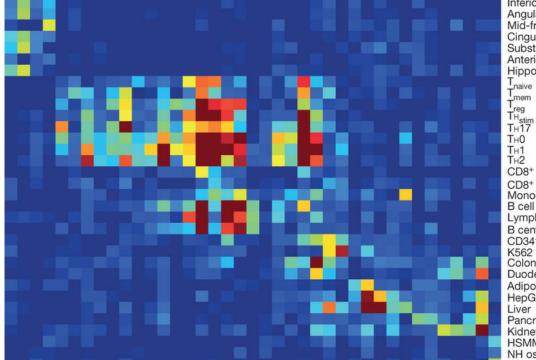
- Experimental autoimmune encephalopathy (EAE) model of multiple sclerosis by immunizing mice with proteins of the myelin sheath and adjuvant
- Collagen-induced arthritis
- Colitis

Genetic models

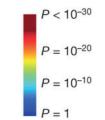
- Modeling human risk alleles
- Forward genetics

Approach	Findings	reference	
Human T cell in vitro	 Diseases associated PTPN22 has enhanced ability to terminate TCR signaling Decreased T cell and B cell responses 	Vang et al. <i>Nat genet</i> 37.12 (2005): 1317 Rieck et al. <i>JI</i> 179.7 (2007): 4704	

Approach	Findings	reference
Human T cell in vitro	 Diseases associated PTPN22 has enhanced ability to terminate TCR signaling Decreased T cell and B cell responses 	Vang et al. <i>Nat genet</i> 37.12 (2005): 1317 Rieck et al. <i>JI</i> 179.7 (2007): 4704
Knock-out mice	 Normal activation of naïve cells, enhanced memory/effector T cell reactivity, more GC formation Increased Tregs Enhanced Treg function 	Hasegawa et al Science, 303 (2004): 685 Brownlie et al. <i>Sci. Signal.</i> 5.252 (2012): ra87 Maineet al <i>JI</i> 188.11 (2012): 5267

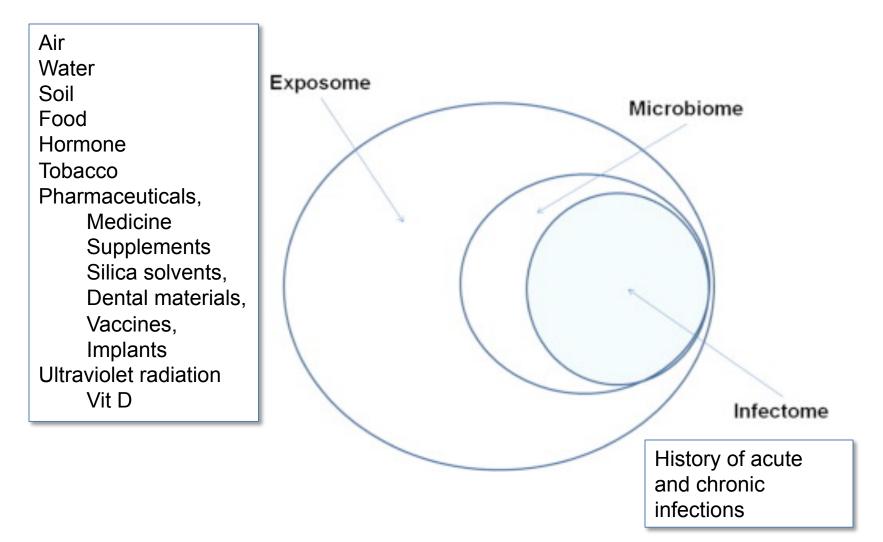

Approach	Findings	reference
Human T cell in vitro	 Diseases associated PTPN22 has enhanced ability to terminate TCR signaling Decreased T cell and B cell responses 	Vang et al. <i>Nat genet</i> 37.12 (2005): 1317 Rieck et al. <i>JI</i> 179.7 (2007): 4704
Knock-out mice	 Normal activation of naïve cells, enhanced memory/effector T cell reactivity, more GC formation Increased Tregs Enhanced Treg function 	Hasegawa et al Science, 303 (2004): 685 Brownlie et al. <i>Sci. Signal.</i> 5.252 (2012): ra87 Maineet al <i>JI</i> 188.11 (2012): 5267
Transgenic in NOD	 Hyporesponsiveness of T and B cells, diabetes protection 	Yeh <i>et al.</i> JI, 191.2 (2013): 594

Approach	Findings	reference
Human T cell in vitro	 Diseases associated PTPN22 has enhanced ability to terminate TCR signaling Decreased T cell and B cell responses 	Vang et al. <i>Nat genet</i> 37.12 (2005): 1317 Rieck et al. <i>JI</i> 179.7 (2007): 4704
Knock-out mice	 Normal activation of naïve cells, enhanced memory/effector T cell reactivity, more GC formation Increased Tregs Enhanced Treg function 	Hasegawa et al Science, 303 (2004): 685 Brownlie et al. <i>Sci. Signal.</i> 5.252 (2012): ra87 Maineet al <i>JI</i> 188.11 (2012): 5267
Transgenic in NOD	 Hyporesponsiveness of T and B cells, diabetes protection 	Yeh <i>et al.</i> JI, 191.2 (2013): 594
Knock-down in NOD mice	 Enhanced Tregs, diabetes protection 	Zheng et Diabetes, 62.3 (2013): 896


Approach	Findings	reference
Human T cell in vitro	 Diseases associated PTPN22 has enhanced ability to terminate TCR signaling Decreased T cell and B cell responses 	Vang et al. <i>Nat genet</i> 37.12 (2005): 1317 Rieck et al. <i>JI</i> 179.7 (2007): 4704
Knock-out mice	 Normal activation of naïve cells, enhanced memory/effector T cell reactivity, more GC formation Increased Tregs Enhanced Treg function 	Hasegawa et al Science, 303 (2004): 685 Brownlie et al. <i>Sci. Signal.</i> 5.252 (2012): ra87 Maineet al <i>JI</i> 188.11 (2012): 5267
Transgenic in NOD	 Hyporesponsiveness of T and B cells, diabetes protection 	Yeh <i>et al.</i> JI, 191.2 (2013): 594
Knock-down in NOD mice	 Enhanced Tregs, diabetes protection 	Zheng et Diabetes, 62.3 (2013): 896
Knock-in disease allele	 Disease allele is a hypomorph Spontaneous autoimmune diseases 	Zhang et al. <i>Nat genet</i> 43.9 (2011): 902. *Dai et al. <i>JCI</i> 123.5 (2013): 2024.

* Reading list

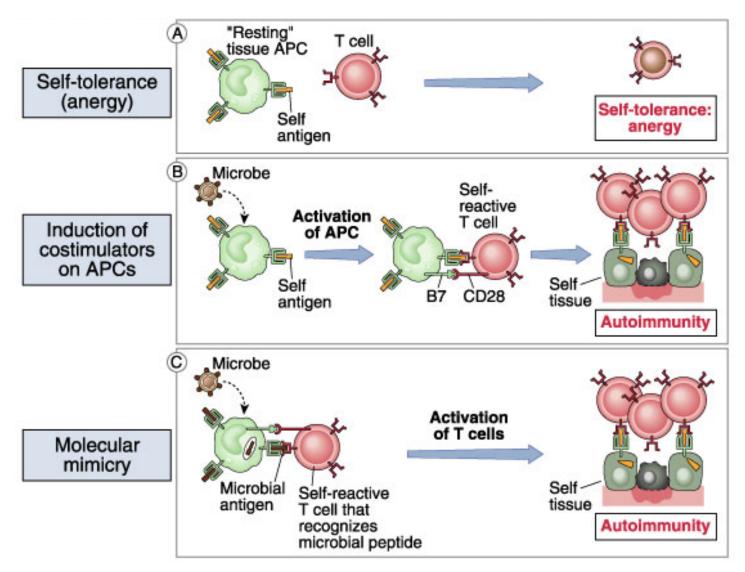
Study of non-protein coding SNPs



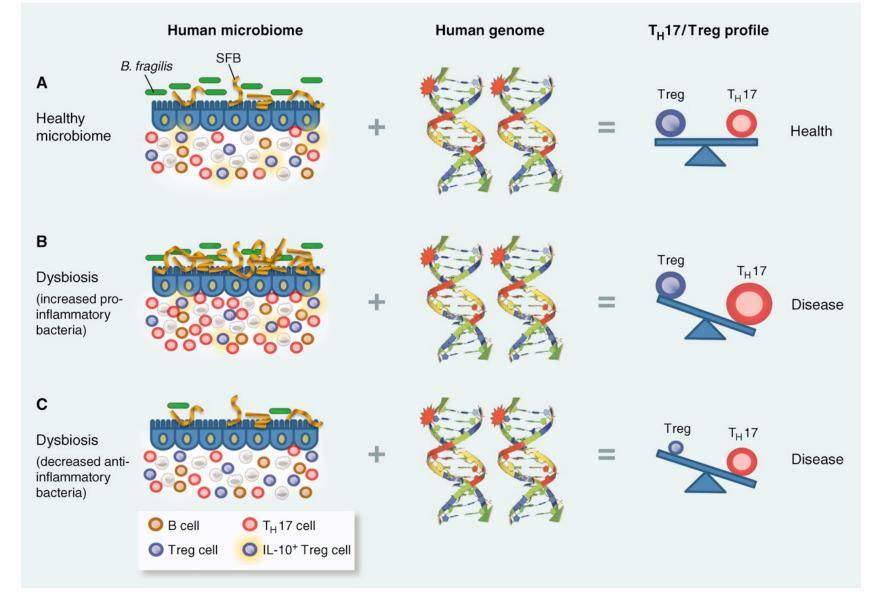
Inferior temporal lobe Angular gyrus Mid-frontal lobe Cingulate gyrus Substantia nigra Anterior caudate Hippocampus middle CD8⁺ naive CD8⁺ mem Monocytes Lymphoblastoid B centroblast CD34+(PB) Colonic mucosa Duodenum mucosa Adipose HepG2 Pancreatic Islets Kidney HSMM NH osteoblast Chondrogenic diff

HDL cholesterol LDL cholesterol Vitiligo Allergy Alzheimer's disease Restless leg syndrome Progressive supranuclear palsy Migraine Asthma Atopic dermatitis Primary sclerosing cholangitis Alopecia areata Juvenile idiopathic arthritis Systemic sclerosis Type 1 diabetes Autoimmune thyroiditis Rheumatoid arthritis Multiple sclerosis Celiac disease Primary biliary cirrhosis Systemic lupus erythematosus Kawasaki disease Behcet's disease Psoriasis Ankylosing spondylitis Crohn's disease Ulcerative colitis Platelet counts Red blood cell traits Fasting glucose diabetes Chronic kidney disease Creatinine levels Urate levels C-reactive protein Renal function BUN Bone mineral density **Friglycerides** Liver enzyme GG Type 2 (

What trigger autoimmune diseases?

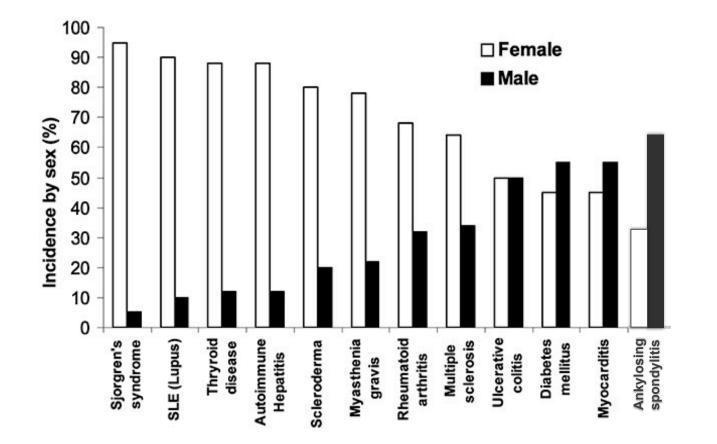


Infections and autoimmunity


Infections trigger autoimmune reactions

- Clinical prodromes, animal models
- Autoimmunity develops after infection is eradicated (i.e. the autoimmune disease is precipitated by infection but is not directly caused by the infection)
- Some autoimmune diseases are reduced or prevented by infections
 - Increasing incidence of type 1 diabetes, multiple sclerosis in developed countries; experimental - NOD mice: mechanism unknown
 - The "hygiene hypothesis" (originally proposed to describe effects of infections on asthma)

Mechanisms of infectious trigger of autoimmune diseases



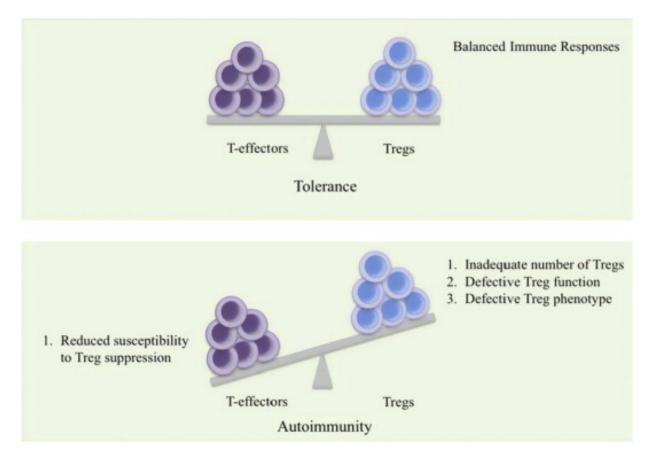
Microbes and autoimmunity?

Lee, Yun Kyung, and Sarkis K. Mazmanian. "Has the microbiota played a critical role in the evolution of the adaptive immune system?." Science 330.6012 (2010): 1768-1773.

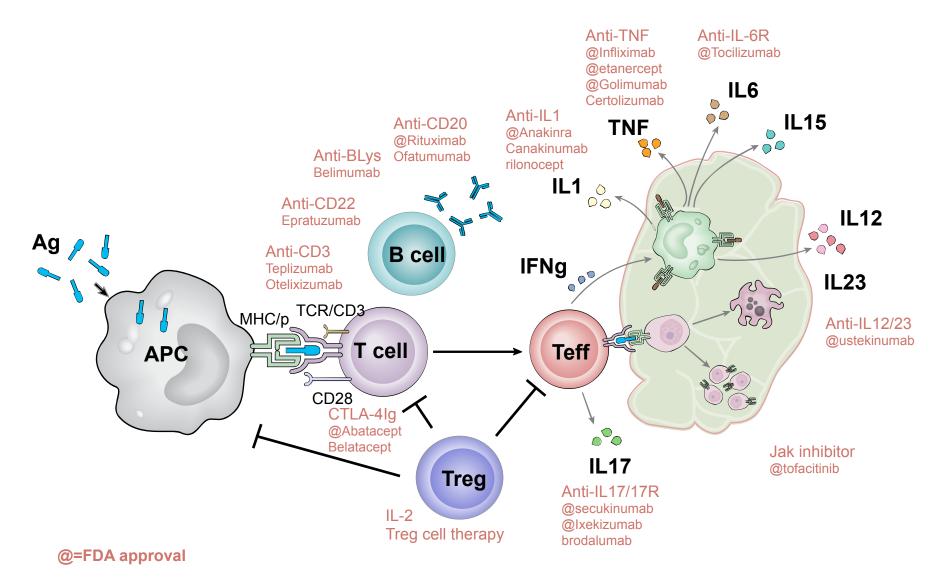
Hormonal impacts of autoimmune diseases

marked reduction in disease severity in many autoimmune conditions during **pregnancy**. Rheumatoid arthritis is perhaps the classic example of this effect. In some cases there is also a rapid exacerbation (rebound) after giving birth.

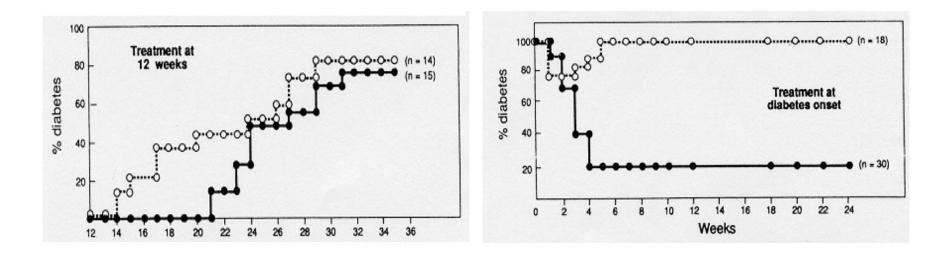
Key concepts and unresolved issues


- Most autoimmune diseases have complex genetic traits
 - HLA is a most influencing gene for autoimmune disease susceptibility
 - Many loci are identified for multiple diseases, eg PTPN22, CD25
 - Most genetic alterations individually confer small increase in disease risks
 - Multiple genetic alterations compound to increase risks
- Contributions of genetics to autoimmune disease vary by diseases, but almost never 100%
- How of most disease-associated alleles contribute to disease development is not known
- More than half of GWAS hit are non-coding
- "Environmental" impact on autoimmune diseases is well established, but poorly defined for most diseases

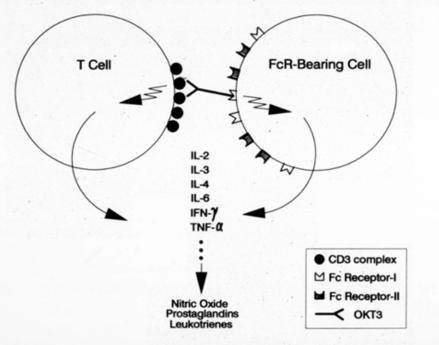
Treatment of autoimmune diseases


Therapies for autoimmune diseases

Goal:


restore **antigen-specific** tolerance by remove only the antigen-specific immune response

Targets for treating autoimmune diseases


Treating type 1 diabetes with anti-CD3 in NOD mice

- Short term, low dose treatment had long lasting protection
- Better efficacy at time of disease onset

Minimizing toxicity of anti-CD3 mAb

CELLULAR ACTIVATION INDUCED BY OKT3 mAb

ORTHOCLONE OKT[®] 3 CYTOKINE STUDY TYPICAL FIRST-DOSE REACTIONS

	IL-2	ΤΝFα	IFNγ
Chills	+	+	+
Headache	+		+
Pyrexia	+	+	+
Vomiting	+	+	+
Diarrhea	+	+	+
Tachycardia	+		+
Hypotension	+		+
Bronchospasm	+	+	
Arthralgia		+	

Minimizing toxicity of anti-CD3 mAb

CELLULAR ACTIVATION INDUCED BY OKT3 mAb

FCR NON-BINDING ANTI-CD3 mAb: MULTIPLE APPROACHES Image: state of the state of the

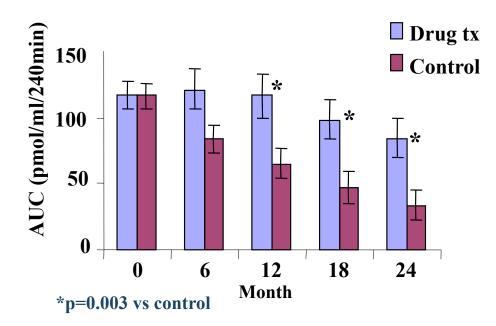
Rate	of	Depletion	(%)
------	----	-----------	-----

Endogenous Naive CD4 Cells	Transferred Th1 Cells
36.8	65.5
36.8	66.3
12.1	40.0
35.5	66.4

TYPICAL FIRST-DOSE REACTIONS			
	IL-2	TNFα	IFNγ
Chills	+	+	+
Headache	+		+
Pyrexia	+	+	+
Vomiting	+	+	+
Diarrhea	+	+	+
Tachycardia	+		+
Hypotension	+		+
Bronchospasm	+	+	
Arthralgia		+	

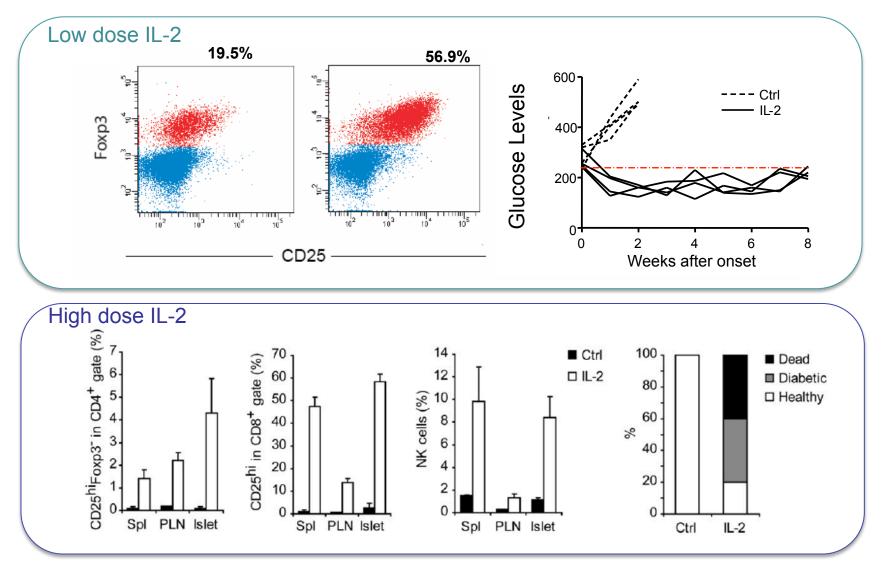
ORTHOCI ONE OKT®3 CYTOKINE STUDY

anti-CD3 Phase I/II trial in Type 1 diabetes

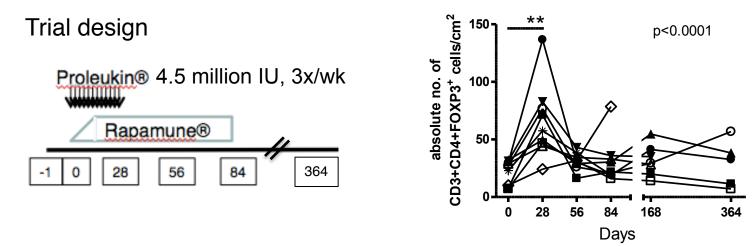

Study Protocol

•New onset Type 1 diabetes mellitus in stable metabolic condition, within the first 6 weeks since diagnosis

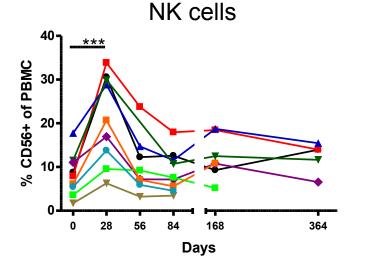
•Age 8 – 35

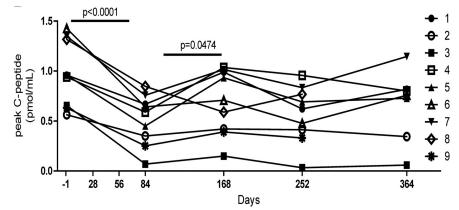

•Two week single treatment with increasing doses of anti-CD3 mAbs

 $5 \text{ mg} \rightarrow 4 \text{ mg/dose}.$

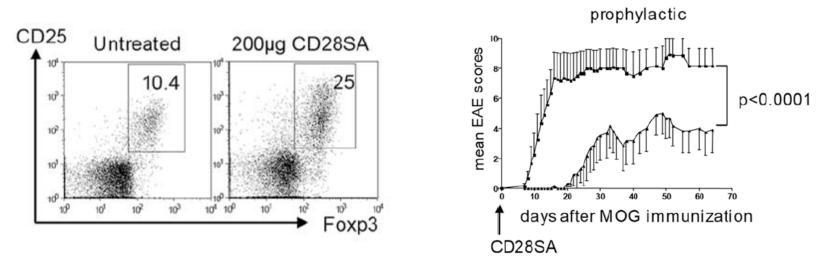

Herold, Kevan C., et al. New England Journal of Medicine 346.22 (2002): 1692-1698. Herold, Kevan C., et al Diabetes 62.11 (2013): 3766-3774.

Promoting Tregs Low-dose IL-2 in NOD mice

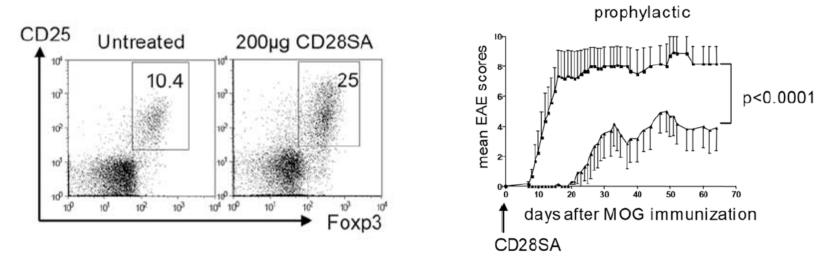



Tang Q et al. Immunity. 2008; 28(5):687-97Grinberg-Bleyer Y et al. J Exp Med, 2010; 207(9):1871-8.

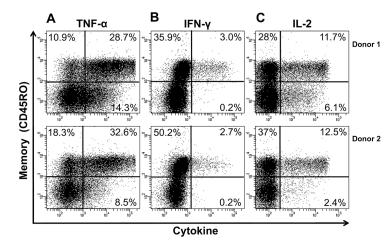
Promoting Tregs Low-dose IL-2 in humans with T1D

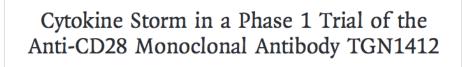


transient loss of c-peptide



Promoting Tregs anti-CD28 super agonist




Ganesh Suntharalingam, F.R.C.A. et al. (2006) nejm 355;10; Gogishvili T, Langenhorst D, Lu⁻⁻ hder F, Elias F, Elflein K, et al. (2009) PLoS ONE 4(2): e4643; Eastwood D et al BJP 2010 161:512

Promoting Tregs anti-CD28 super agonist

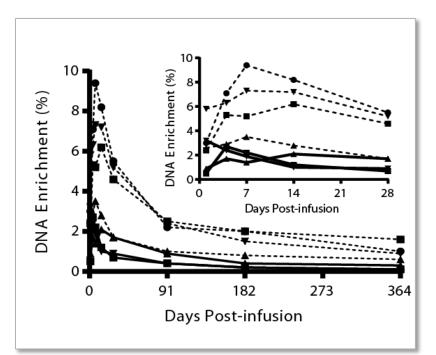
TGN1412 induces cyokine in human memory T cells

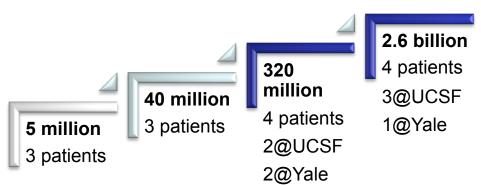
The NEW ENGLAND JOURNAL of MEDICINE

BRIEF REPORT

Ganesh Suntharalingam, F.R.C.A., Meghan R. Perry, M.R.C.P., Stephen Ward, F.R.C.A., Stephen J. Brett, M.D., Andrew Castello-Cortes, F.R.C.A., Michael D. Brunner, F.R.C.A., and Nicki Panoskaltsis, M.D., Ph.D.

Ganesh Suntharalingam, F.R.C.A. et al. (2006) nejm 355;10; Gogishvili T, Langenhorst D, Lu⁻⁻ hder F, Elias F, Elflein K, et al. (2009) PLoS ONE 4(2): e4643; Eastwood D et al BJP 2010 161:512


Treg cell therapy – a living drug


- Cells naturally perform therapeutic tasks.
- Cells are efficient delivery systems going to the right place at the right time.
- Cell behavior is intrinsically selective.
- Cells can handle human genetic variability can be autologous or generic.
- Cell behaviors can be engineered.

Phase I study of Treg cell therapy in T1D Long-term persistence of infused Tregs

Inclusion Criteria:

- Between 18 and 45 years of age
- Meet ADA criteria for T1D
- Recent onset T1DM, 3 24 months
- Detectable C-peptide
- Absence of chronic infections
- No history of malignancy

Bluestone, Jeffrey A., et al. "Type 1 diabetes immunotherapy using polyclonal regulatory T cells." Science translational medicine 7.315 (2015): 315ra189-315ra189.

Key concepts and unresolved issues

- Therapies targeting effector mechanisms for various autoimmune diseases are being developed with success in recent years
 - Anti-TNF for RA
 - Anti-IL17 for psoriasis
 - Anti-IL-23 for ankylosing spondylitis
 - Anti-B cell therapies for T1D and MS
 - Anti-CD3 for T1D
- All of these therapies are non antigen specific and require maintenance treatments
- Inducing dominant regulation may restore tolerance
- Need to develop antigen-specific therapies so not to globally compromising patients' immune defense

Reading list

Delong, Thomas, et al. "Pathogenic CD4 T cells in type 1 diabetes recognize epitopes formed by peptide fusion." Science 351.6274 (2016): 711-714.

Dai, Xuezhi, et al. "A disease-associated PTPN22 variant promotes systemic autoimmunity in murine models." *The Journal of clinical investigation* 123.5 (2013): 2024-2036.

Bottini, Nunzio, and Erik J. Peterson. "Tyrosine phosphatase PTPN22: multifunctional regulator of immune signaling, development, and disease." *Annual review of immunology* 32 (2014): 83-119.

Vinuesa, Carola G., et al. "A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity." *Nature* 435.7041 (2005): 452-458.

Farh KK*, Marson A* et al Genetic and Epigenetic Fine Mapping of Causal Autoimmune Disease Variants. *Nature*. 518, 337-343 (2015).

Latorre, Daniela, et al. "T cells in patients with narcolepsy target self-antigens of hypocretin neurons." *Nature* 562.7725 (2018): 63.