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Germinal center antibody mutation
trajectories are determined by rapid
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Antibodies have the specificity to differentiate foreign antigens that mimic self antigens,
but it remains unclear how such specificity is acquired. In a mouse model, we generated
B cells displaying an antibody that cross-reacts with two related protein antigens
expressed on self versus foreign cells. B cell anergy was imposed by self antigen but
reversed upon challenge with high-density foreign antigen, leading to germinal center
recruitment and antibody gene hypermutation. Single-cell analysis detected rapid
selection for mutations that decrease self affinity and slower selection for epistatic
mutations that specifically increase foreign affinity. Crystal structures revealed that these
mutations exploited subtle topological differences to achieve 5000-fold preferential
binding to foreign over self epitopes. Resolution of antigenic mimicry drove the optimal
affinity maturation trajectory, highlighting the value of retaining self-reactive clones as
substrates for protective antibody responses.

A
ntibodies often distinguish nearly identical
foreign and self antigens, such as the gly-
colipids on Campylobacter jejuni cell walls
and those on human nerve cells, with fewer
than 0.1% of infected people producing

cross-reactive antibodies that result in paralysis
and Guillain-Barré syndrome (1). Apparent limits
to antibody discrimination of self versus foreign
antigens are exploited by HIV, lymphocytic cho-
riomeningitis virus, and Lassa fever virus. These
viruses establish persistent infections and evade
antibodies by mimicking self glycoproteins and
cloaking their foreign envelope proteins with self
glycans (2–5). Although self-reactivity can be re-
moved from antibodies by V(D)J recombination
(6) or by V-region hypermutation (7–9), the cel-
lular basis and mutational pathways for resolving
foreign-self mimicry after infection or immuni-
zation remain undefined.
We engineered bone marrow chimeric mice

(Fig. 1, A and B, and figs. S1 to S4) in which the
majority of developing B cells reaching the spleen
from the bone marrow were polyclonal and ex-
pressed CD45.2 (CD45.2+). However, 1% of tran-
sitional B cells and 0.1% of mature follicular B cells
were CD45.1+ SWHEL cells, which carry HyHEL10
antibodies on their surfaces. HyHEL10 anti-
bodies have a defined structure and low affinity
for a self protein [hen egg lysozyme with three
substitutions (HEL3X) (10–13); 1/KD (equilibrium

dissociation constant) = 1.2 × 107 M−1] and for
a structurally similar foreign protein [duck egg
lysozyme (DEL); 1/KD = 2.5 × 107 M−1). In one
group of chimeric mice, the self protein was
displayed on all cells as an integral membrane
protein, mHEL3X, encoded by a transgene with
a ubiquitin promoter (14). When SWHEL B cells
were self-reactive, they reached the spleen as
short-lived anergic cells with decreased surface
immunoglobulin M (IgM) but normal surface IgD
(Fig. 1B and figs. S1 to S4), located primarily in
the T cell zone (Fig. 1C) as in other anergic
models (15–17). The frequency of anergic SWHEL

cells was lower than the frequency of circulating
anergic IgD+ IgMlo VH4-34+ B cells, which re-
cognize ubiquitous cell surface antigens and
mutate away from self-reactivity in humans (8).
We first tested whether self-reactive SWHEL

B cells could respond to a foreign antigen that
perfectly mimicked self antigen. Sheep red blood
cells (SRBCs) were covalently coupled with self
antigen at surface densities equivalent to those
on endogenous mouse red blood cells (MRBCs)
or 30-fold higher (Fig. 1D). Despite equal levels
of T cell help for germinal center (GC) responses
by the diverse repertoire of other B cells (Fig. 1F),
self-reactive SWHEL B cells entered GCs only when
SRBCs carried high antigen density (Fig. 1G).
SRBCs with low antigen density could nevertheless
induce GC responses from SWHEL B cells that
were not self-reactive. These results are con-
sistent with previous evidence that helper T cells
cooperate with anergic B cells only when B cell–
receptor cross-linking by foreign antigen is greater
than that induced by self antigen (18).
Next, we tested the response of self-reactive

SWHEL B cells to DEL, which differs from self
antigen at four residues that make contact with

the HyHEL10 heavy chain (H chain) (figs. S5 and
S6A). GC reactions were initiated with uncon-
jugated SRBCs, and 11 days later, SWHEL B cells
were recruited into the reactions synchronously
by a booster immunization with DEL coupled at
high density to SRBCs (Fig. 2A). Four days after
immunization with DEL-conjugated SRBCs, SWHEL

B cells constituted ~20% of all GC B cells and were
present in comparable total numbers regardless
of self-reactivity (Fig. 2B and figs. S5 and S6, B and
C). When the SWHEL GC B cells were self-reactive,
they had lower densities of surface IgG1 per cell
(Fig. 2C and fig. S6D), likely caused by engage-
ment with self antigen on neighboring cells. At
this early time point, the frequencies and num-
bers of IgG1− and IgG1+ SWHEL B cells with low
binding to self antigen were increased when
the cells were self-reactive (Fig. 2, C and D, and
fig. S6C). These low-binding cells had increased
frequencies of missense mutations (fig. S6, E and
F), with 55% having acquired a Ser52→Arg52

(S52R) or Ser52→Asn52 (S52N) mutation in
complementarity-determining region 2 (CDR2)
(Fig. 2E). Both mutations greatly decreased af-
finities for both self and foreign proteins (fig. S7
and table S1).
To determine whether rapid selection for mu-

tant GC B cells with decreased affinity for self
protein was followed by maturation of affinity
for foreign protein, we analyzed antibody mu-
tations 4, 7, and 11 days after SWHEL B cells
were challenged with DEL-conjugated SRBCs
(Fig. 3A and fig. S8). On day 4, the frequencies
of S52R and S52N mutations were again signif-
icantly increased (11.55 versus 3.55%; P = 0.0093)
when SWHEL B cells were self-reactive. However,
the frequencies decreased on days 7 and 11. An
Ile29→Phe29 (I29F) mutation in CDR1 became
prevalent instead on day 7, occurring as a single
substitution in 31% of SWHEL B cells when they
were self-reactive compared with only 1.7% when
they were not. I29F conferred the property of
distinguishing foreign from self protein, causing
a 10-fold decrease in self affinity and a 2.6-fold
increase in foreign affinity (Fig. 3A, fig. S7, and
table S1).
The I29F mutation became paired with

Ser52→Thr52 (S52T) and Tyr53→Phe53 (Y53F) mu-
tations in CDR2. This pattern emerged in a small
subset of self-reactive cells on day 7, but these
mutations became most prevalent as pairs or a
trio by day 11. S52T and Y53F were rarely found
individually, but combined with the I29F foun-
dation mutation, they increased foreign-self dis-
crimination. Cells with the combined mutations
retained 1 × 106 M−1 affinity for self but showed
progressively increasing foreign affinity, up to to
6 × 109 M−1. Strong epistatic (nonadditive) effects
were observed. For example, the I29F-S52T-Y53F
trio increased the apparent differential binding
energy (DDG) for binding foreign antigen by
−3.3 kcal/mol, compared with −1.6 kcal/mol
expected for additive effects of the individual
mutations (table S1). This trio of mutations be-
came even more prevalent when self-reactive
SWHEL B cells were recruited at the outset of the
GC reaction and analyzed 15 days later (Fig. 3B
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and fig. S9). Thus, an antibody that was initially
unable to distinguish foreign from self antigen
had evolved a 5000-fold differential binding to
foreign antigen over self antigen by first mutat-
ing away from binding self antigen and subse-
quently mutating toward binding foreign antigen.
SWHEL-derived cells that had lost self-binding
but retained foreign binding were also frequent
among the IgG1+ memory B cell compartment
(fig. S10). Foreign antigen–specific IgG1 serum
titers were increased in mice with initially self-
reactive SWHEL B cells (fig. S11).
A different, less optimal evolutionary trajec-

tory prevailed when SWHEL B cells were not
self-reactive. This trajectory was dominated by
acquisition of a CDR2 mutation (Y58F) alone,
paired, or in trio with S52T and Y53F (Fig. 3).
Y58F alone or with S52T and Y53F increased self-
affinity by a factor of four, explaining why this
trajectory was not taken by self-reactive SWHEL

cells. The Y58F-S52T-Y53F trio increased foreign
affinity to 2 × 109 M−1, which was one-third of
the affinity obtained with the I29F-S52T-Y53F
trio selected through the self-reactive trajectory.
To understand how these three mutations con-

ferred a 5000-fold differential binding to foreign
protein over self, we used x-ray crystallography
to analyze the structure of HyHEL10I29F,S52T,Y53F

in complex with DEL (Fig. 4, table S2, and
movie S1) compared to that of wild-type HyHEL10
(HyHEL10WT) in complex with HEL (19). I29F
resulted in a structural rearrangement of the
CDR1 loop to accommodate the larger phenyl-
alanine side chain. Displacement of this loop
(arrow 1 in Fig. 4C) opened up additional struc-
tural adjustments of CDR2 (arrow 2 in Fig. 4C)
and, in particular, repositioned Y53F to interact
with a hydrophobic pocket formed on the sur-
face of DEL by the short Ala75 (A75) side chain,
which is in contrast to the much longer leucine

in HEL. The CDR2 backbone adjustments also
allowed replacement of the smaller S52 side chain
with threonine. Thus, our structural analyses
were in agreement with the observed mutational
trajectory, whereby the I29F foundation muta-
tion introduces structural rearrangements into
CDR1 and CDR2. These rearrangements enable
secondary mutations at positions 52 and 53, which
selectively increase foreign affinity in an epistatic
manner. Binding studies confirmed that I29F
confers 50-fold–lower binding to self versus
foreign antigen by exploiting the Leu75→Ala75

(L75A) foreign pocket coupled with the adja-
cent Glu73→Lys73 charge reversal (table S1). This
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Fig. 1. Recruitment of anergic cells into GCs requires higher foreign antigen density.
Construction of parallel groups of hematopoietic chimeras (A) and analysis of their spleens by
(B) flow cytometry of all B cells (left) or CD45.1+ SWHEL B cells (right) (n = 14 spleens per group;
values are mean percentages ± SEM) or (C) immunohistology showing localization of SWHEL

B cells (green), other B cells (blue), and Tcells (pink). Dashed lines indicate borders between splenic
compartments. FZ, follicular zone; MZ, marginal zone; TZ, T cell zone. (D) Relative abundances of
self HEL3X on MRBCs from mHEL3Xtg or nontransgenic mice and on foreign SRBCs conjugated with
0 (none), 0.1 (low), or 10 (high) mg/ml HEL3X. (E) Timing of chimera immunizations. (F) Total GC
cells per spleen. (G) Percentages of SWHEL cells among GC B cells. NS, not significant (P > 0.05);
**P < 0.01; ***P < 0.001; Student’s t test. Data points represent one chimera (two experiments,
16 to 26 chimeras in each).
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effect was further confirmed by solving the struc-
ture of HyHEL10I29F in complex with DEL (fig. S12).
We next identified anergic B cells in the

mHEL3X transgenic (mHEL3Xtg) mice within a
polyclonal repertoire that displayed micromolar
affinity for the same self antigen and tested
whether these B cells too could resolve anti-
genic mimicry. HEL3X-binding B cells consti-
tuted 2.7% of IgD+ IgMlo anergic B cells and
0.5% of all splenic B cells (fig. S13A). These

were sorted and added at 0.5% frequency to
unselected CD45.1+ B cells, and the polyclonal
mixture was injected together with T cells into
mHEL3Xtg Rag1−/− mice immunized with DEL-
conjugated SRBCs. In the recipients, 96% of the
GC response was derived from the unselected
CD45.1+ B cells, presumably recognizing mostly
SRBC antigens. In contrast, 61% of the DEL-
binding GC response was derived from the poly-
clonal HEL3X-binding anergic CD45.2+ B cells

(fig. S13B). Only 9.7% of these cells still bound
self antigen, whereas 53% bound foreign DEL
selectively (fig. S13C). Thus, in a normal rep-
ertoire, cells with micromolar affinity for self
HEL3X are dominant contributors to the GC
response against the self mimic DEL and rap-
idly lose binding to self.
The findings here extend evidence for auto-

antibody redemption in human antibodies (7–9)
by showing that mutation away from self-reactivity
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precedes mutation toward foreign affinity to cre-
ate distinctive epistatic trajectories. Self-reactivity,
rather than being a barrier to immunization, di-
rected cells down an alternative trajectory, which
produced a higher final affinity for the foreign
immunogen. The higher threshold to activate an-
ergic cells and recruit them to GC reactions is
nevertheless an important constraint: for instance,
a low density of Env molecules on HIV virions
may fail to activate anergic B cells withmoderate
cross-reactive affinity for self glycans attached to
foreign and self polypeptides, precluding muta-
tion trajectories away from self-reactivity.
Antibody mutation away from self-reactivity

in GC reactions defers the need to acquire strin-
gent self-tolerance until after an infection. This
process is complementary to the concept of purg-
ing self-reactive antibodies from the preimmune
repertoire before they can be tested for binding
foreign antigen (1, 6, 20–22) as well as to Jerne’s
hypothesis of mutation away from self in the bone
marrow and bursa (23). Both concepts create a
“holes in the repertoire” problem if applied too
stringently (24, 25). Crucially, autoantibody re-
demption minimizes the potential for microbes
to evolve antigens that are “almost self,” which
could otherwise be recognized only by preim-
mune antibodies that had been deleted or edited
in the bone marrow. Mutation away from self in
response to one foreign antigen may allow prog-
eny B cells to respond to an unrelated foreign
antigen later. For example, intestinal microbes
may induce polyspecific B cells to mutate away
from self, providing a self-tolerant repertoire that
would not be available in individuals treated

with antibiotics or raised in a more hygienic en-
vironment. The evolution of an antibody along
a limited set of mutation trajectories, driven by
two selection pressures for higher affinity for
one ligand and lower affinity for another, pro-
vides an example of deterministic molecular evo-
lution. Our findings provide insights into the
GC reaction and the evolution of specificity in
antibody-antigen interactions.
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