Innate Immunity

<u>Cliff Lowell, MD-PhD HSW1201 clifford.lowell@ucsf.edu</u>

- Evolutionary View
- Epithelial barriers to infection
- Complement activation
- Four main types of innate recognition molecules TLRs, CLRs, NLRs, RLRs
- NF- κ B, transcriptional regulator of inflammation
- Inflammasome activation
- Anti-viral innate immunity: the interferon system and killing of virus-infected cells

Innate Immunity: An Evolutionary View

- All multicellular organisms have defense mechanisms against microbial and viral infections
- For vertebrates, immune defense can be divided into innate immunity and adaptive immunity
- Vertebrate innate immune elements are closely related to components of immunity in invertebrates (especially TLRs and complement)
- Innate immunity is "hard wired" into cells, with defined responses to defined pathogen molecules

Innate Immunity: An Evolutionary View

• Innate immune responses have two functions

A first line of host defense (while clonal expansion occurs by T cells and B cells)

Directing the type of adaptive immune response (activation vs. tolerance; specialization of T cells and antibody types)

Also involved in tissue repair

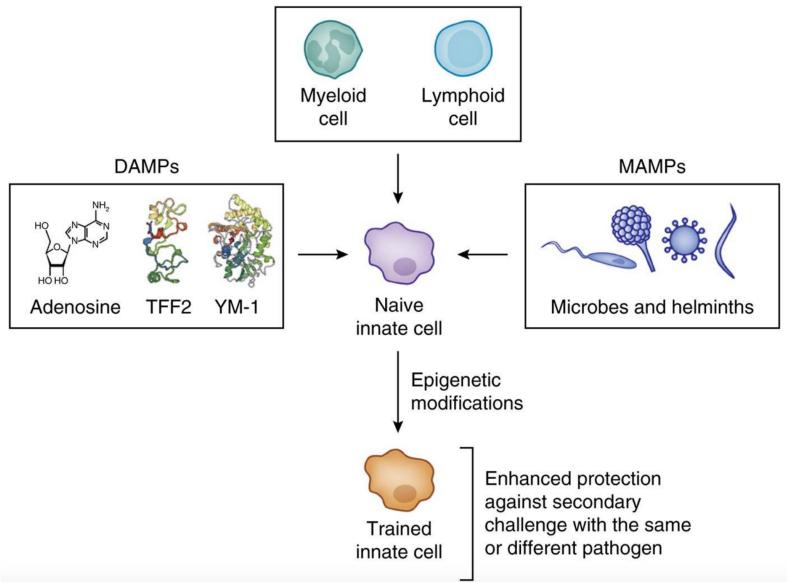
Innate Immunity

- Immediate response (mins)
- Occurs at site of pathogen entry (somewhat)
- Based on recognition of common pathogen elements (flagellin, ect)
- Specificity and diversity is limited
- No memory
- Limited cellular interactions

Adaptive Immunity

- Delayed response (days)
- Occurs in immune organs (LN)
- Based on recognition of peptides (mainly) specific to pathogen
- Specificity and diversity is very high
- Memory to allow secondary response
- Complex cellular interactions (help)

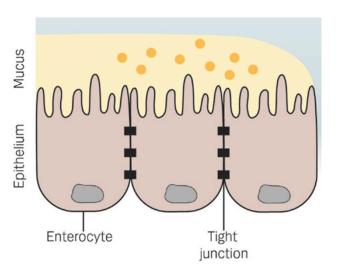
Innate Immunity and memory

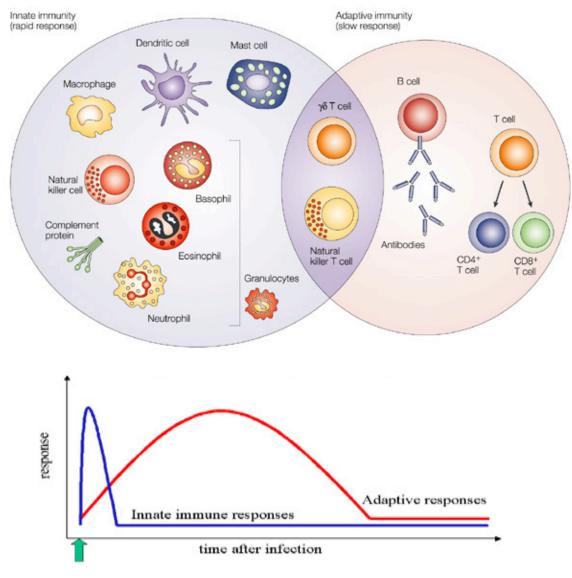

Newer term: "Trained Immunity"

- Also called "non-specific memory"
- Concept that some innate cells exposed to one innate stimulus respond better to second (different) innate stimulus
- Seen in NK cells (Lanier Lab as pioneers)
- Monocytes/macrophages → exposed to b-glycans, increased cytokine responses to LPS or other bacterial components
 - increased cytokines
 - altered metabolism (increased glycolysis)
 - reduced H3K4 me3 epigenetic marks
- Pre-activated or "trained" monocytes seen in patients with autoimmune/ autoinflammatory disorders

Arts et al, Front Immunol, 9:298 (2018)

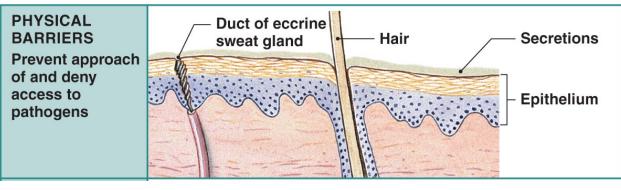
Trained Immunity

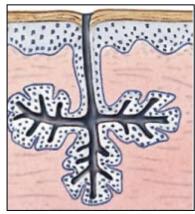

Cellular communication



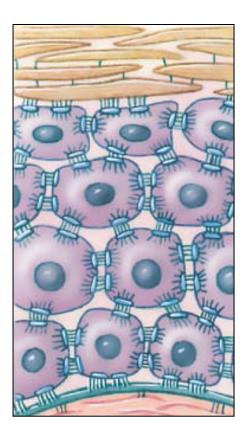
Arts et al, Front Immunol, 9:298 (2018)

Components of Innate Immunity

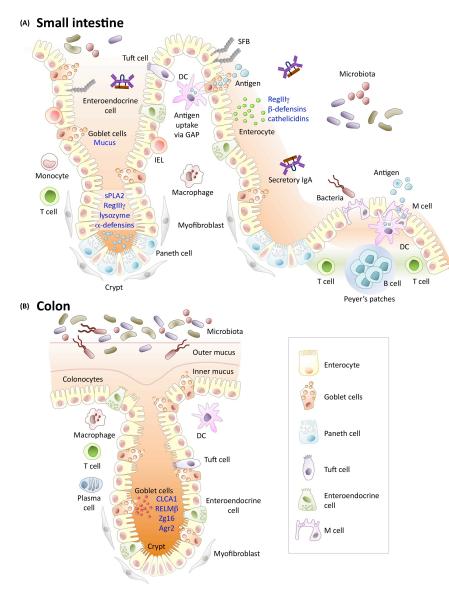

- Epithelial barriers
- Soluble molecules (complement)
- Cellular (immune)



Epithelial barriers as first line of defense


- Surface barriers ward off invading pathogens
- Skin, mucous membranes, and their secretions

Intestinal epithelium


Airway epithelium

The Epithelial Layer: The initial barrier to infection

- 1. Physical barrier of the epithelial layer (toughness of barrier varies by location due to other functions: air exchange, nutrient uptake, etc.)
- 2. Acid pH of the stomach
- 3. Anti-microbial peptides secreted by some epithelial cells (small intestines, small airways of lungs)
- Mucus/cilia to remove particles, microbes from airways; mucus layer in gut creates spatial separation between epithelial cells and most of bacteria
- Microbe-binding molecules outside the epithelial layer: IgA; surfactants A/D (lung)

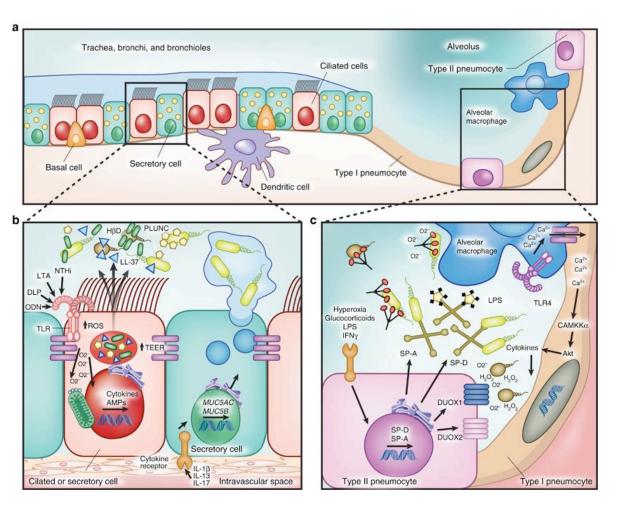
Intestinal epithelial defense mechanisms

multiple cell types:

- enterocytes
- goblet cells (mucin)
- endocrine cells
- Paneth cells (AMP producers)
- M cells (Ag uptake)
- Tuft cells (IL-25)

Close interaction with IELs:

- M cells and Peyers patches
- transcytosis of IgA
- cytokine production (TSLP)


Close interaction with microbiota:

- microbial sensing (TLRs)
- microbial metabolites (SCFA)
- affect microbiome
- inflammasome activation

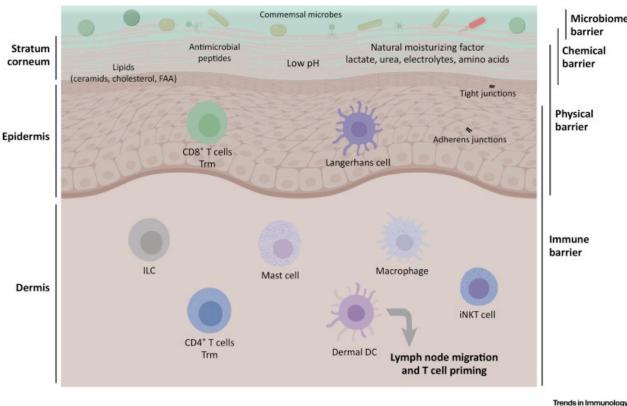
Allaire et al, Trends Immunol, 39:677 (2018)

Trends in Immunology

Lung epithelial defense mechanisms

multiple cell types:

- ciliated cells
- secretory cells (mucin)
- ATI


• ATII

Close interaction with DCs:

- DC Ag sensing
- surfactant production
- cytokine production
- APM production

Interaction with microbiota:microbial sensing (TLRs)

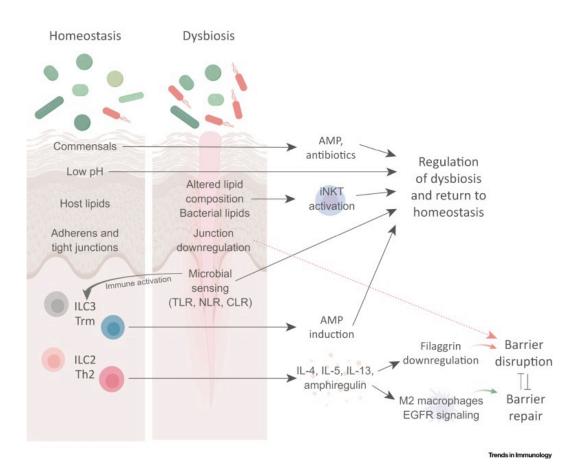
Skin epithelial defense mechanisms

multiple cell types:

Microbiome barrier

Chemical barrier

- keritinocytes • epidermal cells
- hair follicles


Interaction w/ DCs, lymphs:

- Langerhan cells
- iNKT, γδT-cells
- cytokine production

Interaction with microbiota: microbial sensing (TLRs)

Everich et al, Trends Immuno, 39:315 (2018)

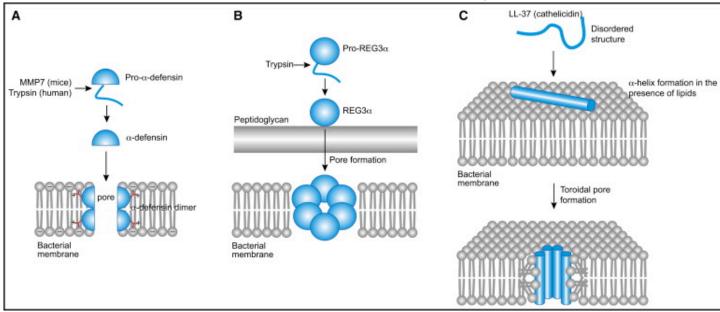
Skin epithelial defense mechanisms

multiple cell types:

- keritinocytes
- epidermal cells
- hair follicles

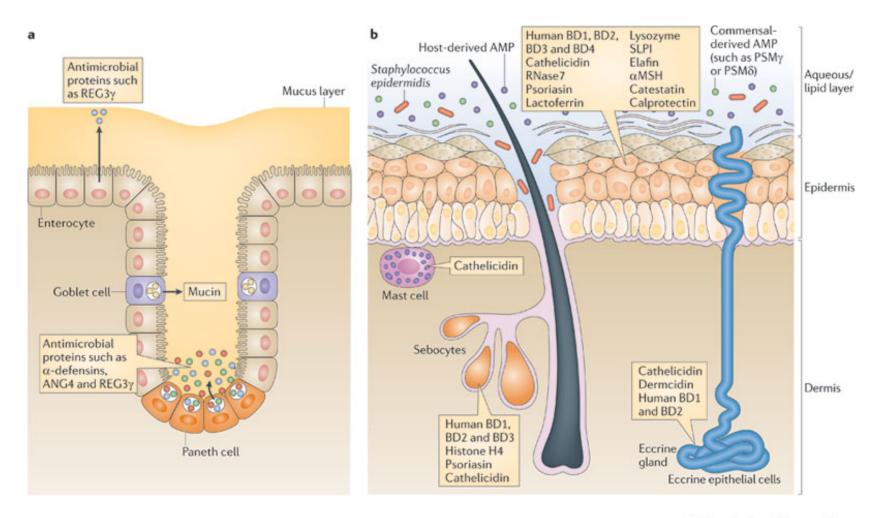
Interaction w/ DCs, lymphs:

- Langerhan cells
- iNKT, $\gamma\delta$ T-cells
- cytokine production


Interaction with microbiota:

- microbial sensing (TLRs)
- AMP production

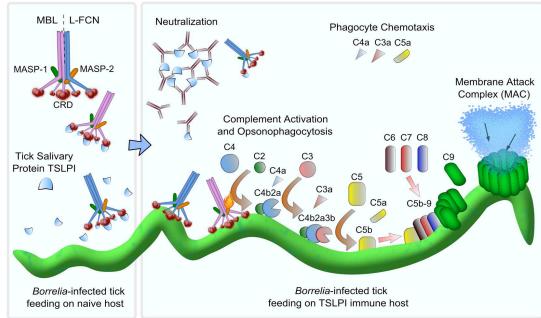
Eyerich et al, Trends Immuno, 39:315 (2018)


Anti-microbial peptides

- Ancient form of innate immunity
- ~ 1800 different types, from 12 50 aa in size
- mainly produced epithelial cells, also immune cells
- highly positively charged with amphipathic structure
- allow for insertion into membranes, form pores. Natural antibiotics
- also activate/modulate immune cells
- dysregulation associated with inflammatory disease
- cathelicidins (LL-37), β -defensins as examples

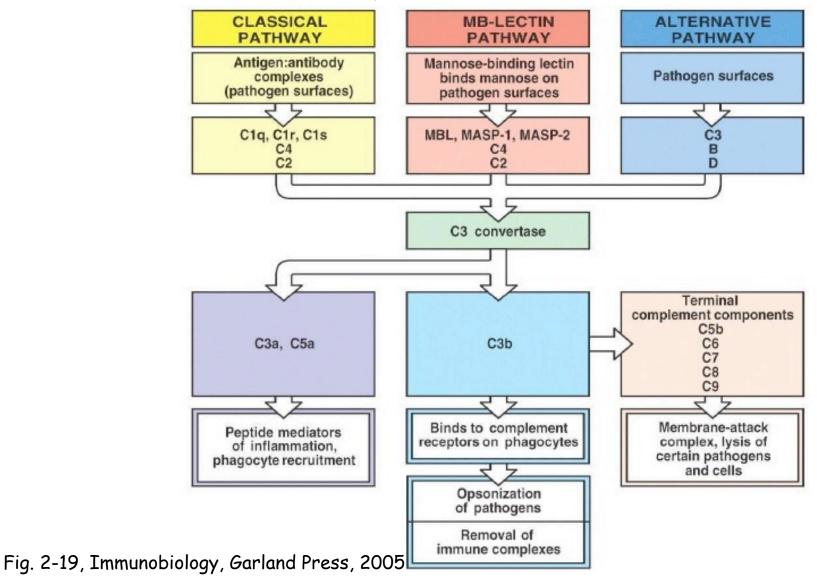
Mukherjee and Hooper, Immunity, 42:28 (2015)

Anti-microbial peptides in the gut and skin

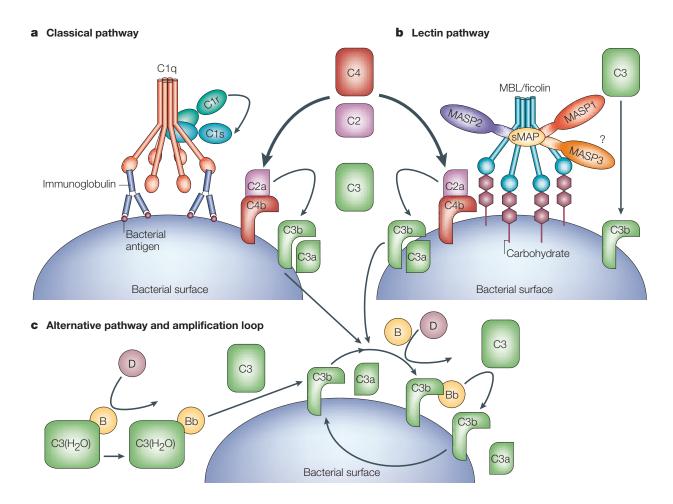


Nature Reviews | Immunology

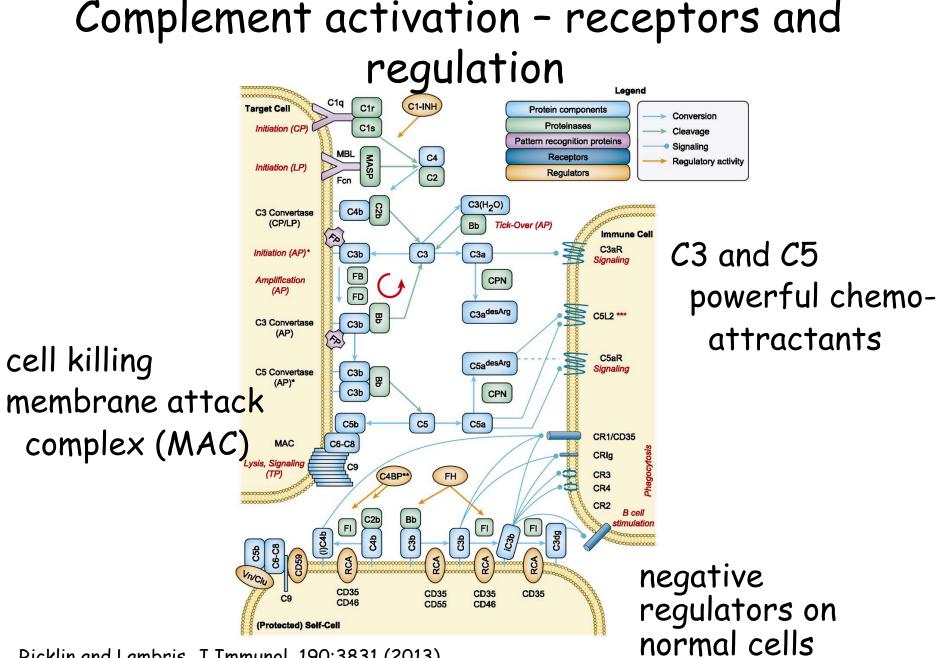
Gallo and Hooper, Nat Rev Immunol, 12:503 (2012)


Soluble innate recognition and complement activation

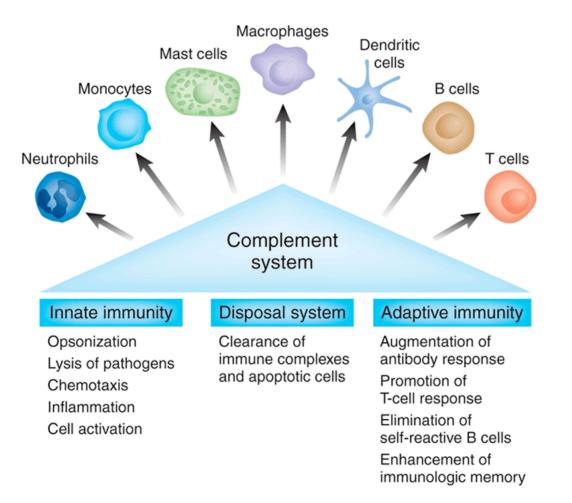
- recognize foreign carbohydrate structures
- leads to complement activation
- mannose binding lectin, lung surfactants, ficolins
- Immune complexes and complement activation
- Many disease associations



Schuijt et al, Cell Host Microb, 10:136 (2011)


Complement activation Three ways to get it started

Complement activation Three ways to get it started



Foster, Nat Rev Micro, 3:948 (2005)

Ricklin and Lambris, J Immunol, 190:3831 (2013)

Functional outputs of complement activation

complement activation - disease association

- excessive activation, amplification, tissue injury
- contributes to cycles of inflammation
- Examples:

macular degeneration (AMD), factor H polymorphisms Alzheimers, CR1 polymorphisms HUS (kidney) - bacterial or genetic Deficiencies associated with autoimmunity (SLE, RA) PNH - CD55 and CD59 deficiency Nissera infection with C9 deficiency Complement activation ischemia/reperfusion injury Periodontal diseases Trauma induced SIRS

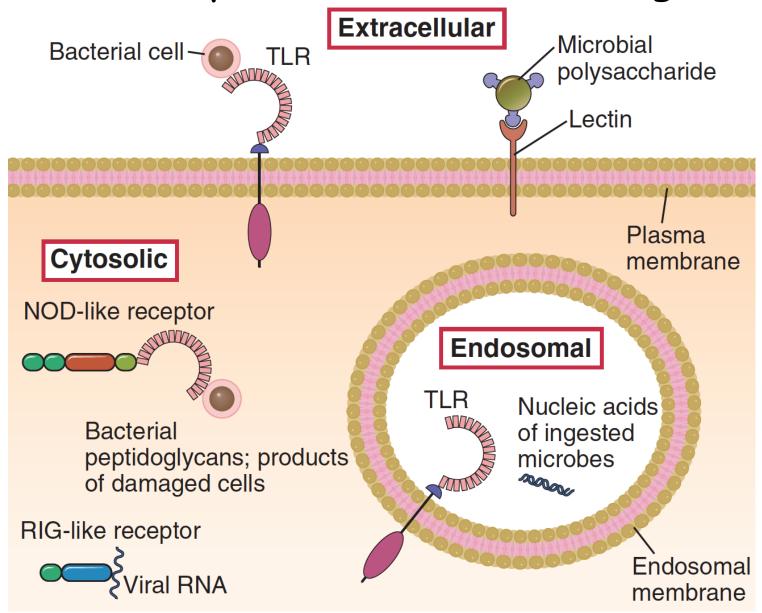
Clinical significance: C3/C5 levels as biomarkers

Cells of the innate immune system adaptive innate Th1 cells epithelial cells Th2 cells NK cells monocytes NKT cells Th17 cells macrophages $\gamma\delta$ T cells Th9 cells dendritic cells Th22 cells neutrophils innate lymphoid eosinophils T reg cells cells cytotoxic T cells basophils **B** cells mast cells

The major receptors by which innate immune cells recognize pathogens

Four major families of pathogen recognition Rs

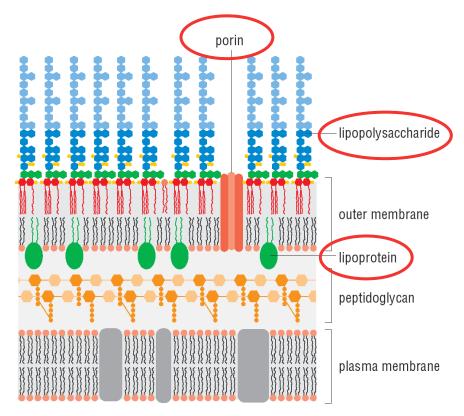
- Toll-like receptors (TLRs)
- C-type lectin-like receptors (CLRs)
 (Lectin: carbohydrate binding protein)
- Nod-like receptors (NLRs)
- Rig-I-like receptors (RLRs)

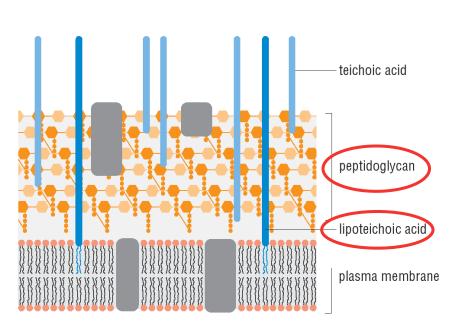

Other major receptors on innate cells

- FcRs recognize Ig opsonized particles/Ags
- Complement receptors comp opsonsized

Present (in different amounts) in all innate cells

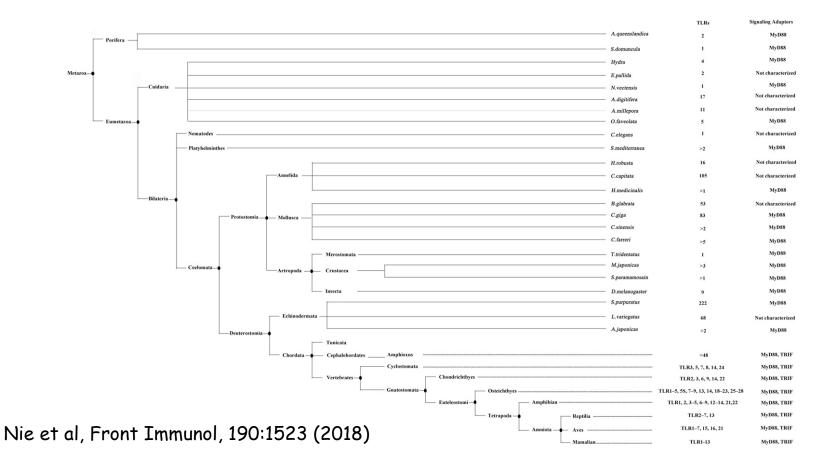
- most studied in macrophages and DCs


Innate receptors: location of recognition

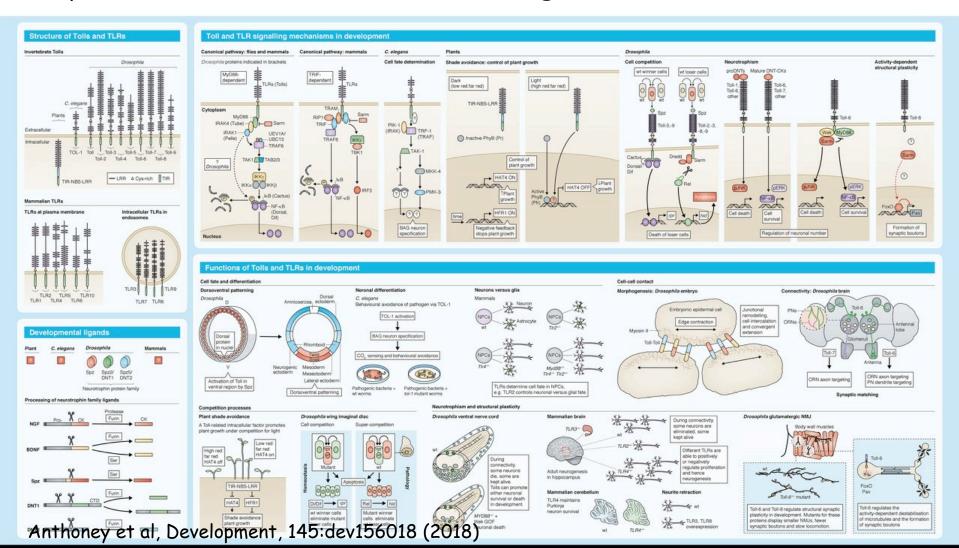

Types of molecules recognized by innate immune receptors

- TLRs, CLRs, NLRs, and RLRs see highly conserved and essential components of microbes "Pathogen-associated molecular patterns" (PAMPs) examples: nucleic acids, proteins, lipids
- Also see host molecules generated by stress or damage "Danger-associated molecular patterns" (DAMPs) examples: chromatin (HMGB1), S100, mtDNA

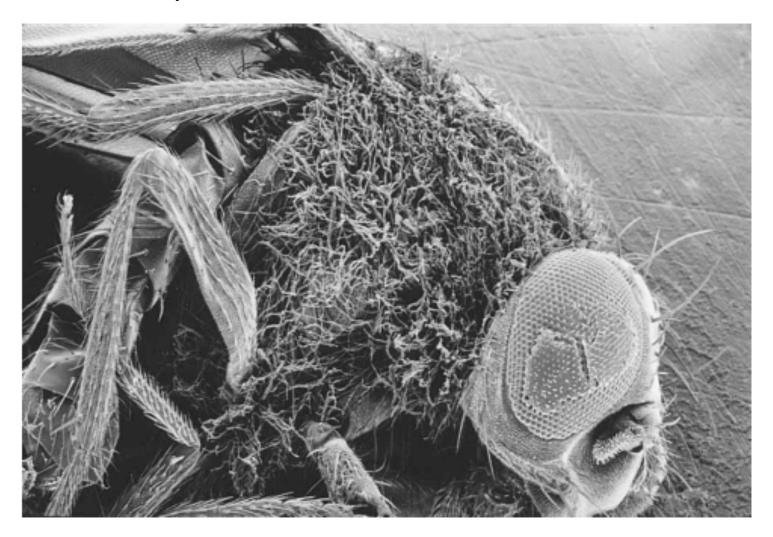
Innate immune recognition of bacterial cell wall components


Gram-negative bacteria

Gram-positive bacteria

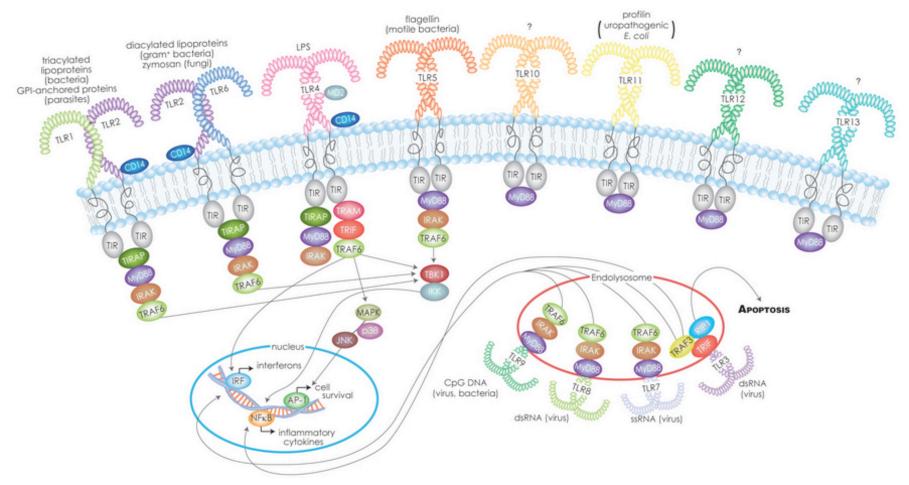

TLRs are the most ancient of all innate receptors

- widest spectrum of pathogen recognition
- present in plants, invertebrates, vertebrates
- generally conserved structures and signaling



TLRs originally described in fly development

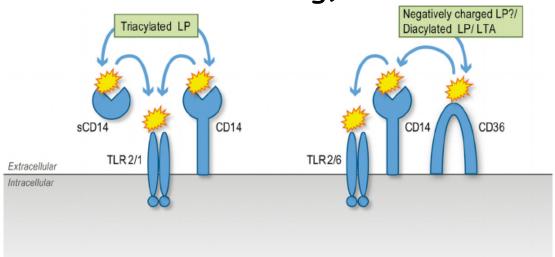
Pathway defined for role in dorsal/ventral patterning in early embryos Spaetzle->Toll->->Dorsal (NF-KB homolog)


Toll is required for innate defense in flies

J. Hoffmann et al. Cell 1996

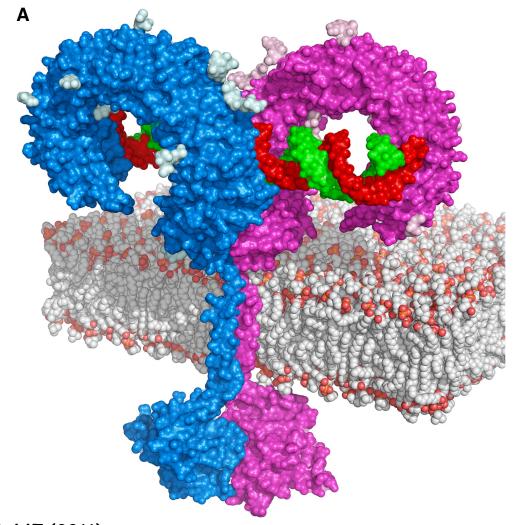
2011 Nobel Prize with Bruce Beutler for Innate Immunity

Mammalian Toll-like receptors/ligands

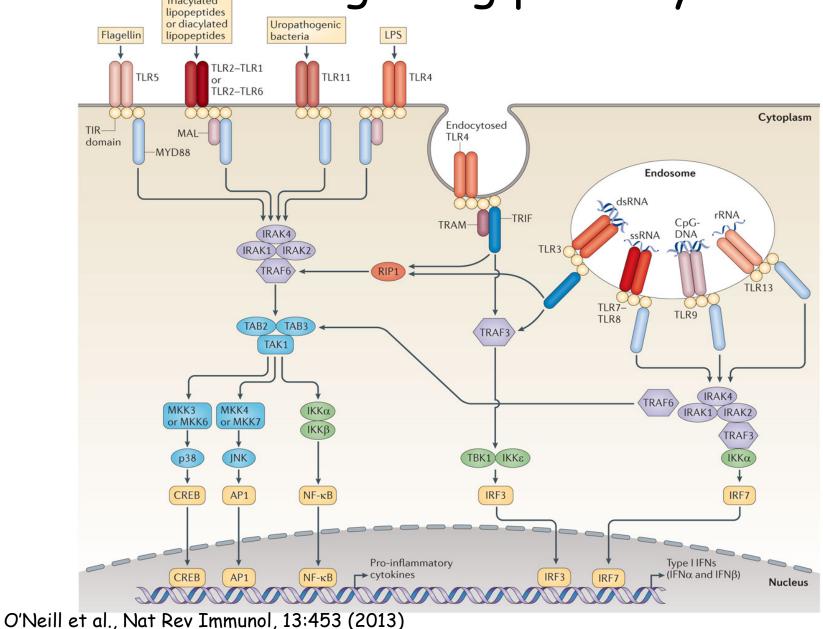


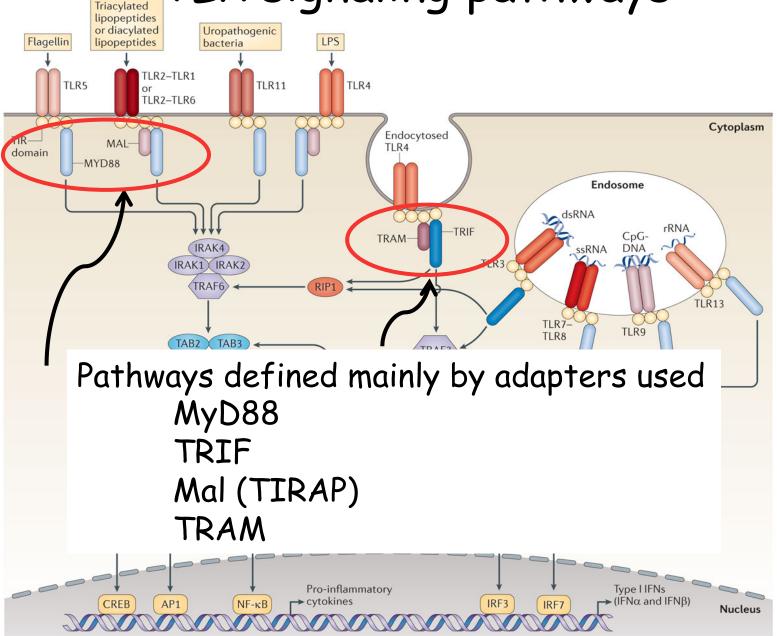
10 -13 different TLRs in mammals (10 in humans) LRR extracellular domain; TIR domain inside

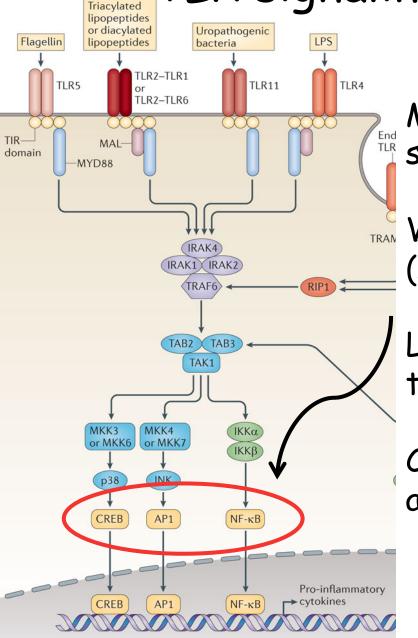
https://www.caymanchem.com/Article/2190


Toll-like receptors directly bind ligands (mostly)

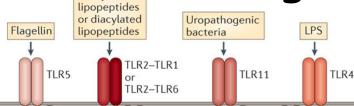
- TLRs recognize pathogen-derived ligands by their ectodomains (leucine rich repeat horseshoe structure), leading to receptor dimerization → intracellular signaling
- Most ligands bind directly (Pam3CSK4 to TLR2 or dsRNA to TLR3) but some associated host proteins needed (CD14 or MD-2 for LPS binding)




Bergenhenegouwen et al J Leuk Biol 94:885 (2013)


Structure of TLR3 dimer bound to ds RNA

Botos et al., Structure, 19:447 (2011)



MyD88 most dominant signaling pathway

Works through IRAKs (ser/thr kinases)

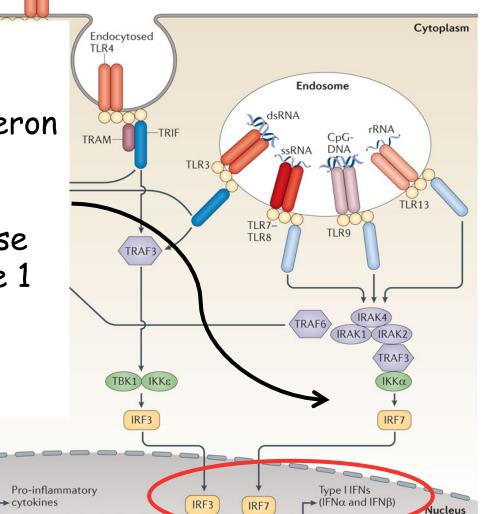
Links to NF-kB activation through IKK degradation

Cell surface receptors also activate MAPK pathways

TRIF pathway (only pathway used by TLR3) activates type 1 interferon production.

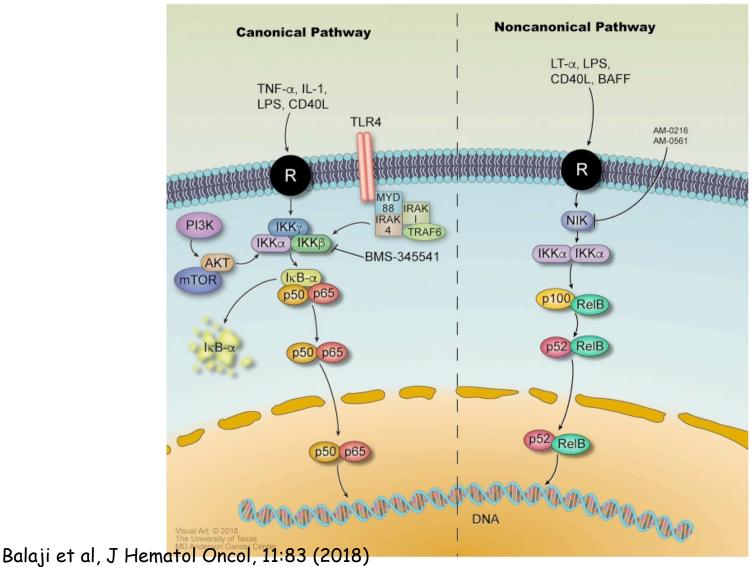
Triacylated

Endosomal TLRs that use MyD88 also link to type 1 interferon production


C.KEB

AP1

0000


NF-KB

NF-KB

Pathways of NF-KB activation

NF- κ B is a family of transcription factors: p50, p52, p65 (Rel-A), c-Rel, Rel-B; plus inhibitors (I- κ B)

Genes regulated by NF-KB

Cytokines

TNF-α, TNF-β IL-1-α, IL-1β IFN-a, IFN-v TRAIL, M-CSF RANTES FAS ligand Lymphotoxin α , β G-CSF, GM-CSF IL- 2, IL- 6, IL -8, IL- 9, IL-10, IL-11, IL-12, IL-13, IL-15 NK4. GCP-2 (CXCL6) Gro a, Gro y, Gro-1 ICOS IL-1 receptor antagonist IP-10, KC, BMP-2 CCL 15. CCL 22. CCL 28. CCL 5 CD40 ligand CINC-1, CXCL 11 ENA-78 (CXCL5) Eotaxin Erythropoietin MCP-1/JE, MIP-1 a B MIP-2, MIP-3 a, Mob-1 Neutrophil- activating peptide 78 NK-1R Stem cell factor Angiotensinogen TCA3 TFF3 TSP-1 TSP-2

Receptors

beta2 microglobulin µ-opioid receptor 2A A1 Adenosine receptor Amiloride-sensitive Na channel

Androgen receptor B 7.1 Bradykinin B-1 receptor BRL-1, CCR 5, CCR 7, CD 137 CD 154, CD 23, CD 40, CD 48 CD 69, CD 83, CD 95 EGFR Gal 1 receptor, GFBP-2 Glucocorticoid receptor IGFBP-1

IL-1 receptor antagonist IL-2 receptor a-chain Ig γ4, Ig Cγ1, Ig ε heavy chain Ig K light chain, invariant chain II Lox-1. Mdr 1 MHC class (HLA-B7) MHC class I (H-2Kb) Neuropeptode YY1- receptor NMDA receptor subunint NR-1 NMDA receptor subunit Nod 2 Polymeric la receptor RAF receptor 1.RAGE T -cell receptor β chain T -cell receptor CD3y TNF-Receptor, p75/80 DR4, DR5

Early response genes

p62, p22/RPG1, B 94 Egr-1, TIEG

Transcription factors

NF-KB1, NF-KB2, c-Rel, RelB IkBα c-fos, p53, c-myb, JunB E2F3a, Elf3 , ELYS ETR 1001 IRF-1, IRF-2, IRF-4, IRF-7 Mail, Nurr1, Stat5a, WT1

Metastasis

ICAM-1, VCAM-1 ELAM-1, E-selectin Endoglin, Fibronectin MadCAM-1, P-selectin Tenascin-C, DC-SIGN MMP-3, MMP-9, CXCR4 KA11/CD82, uPA

Antiapoptosis

BcI-2, BcI-XL, BfI1/A1 TRAF-1, TRAF-2, TRAF6 c-FLIP, IAPs Survivin, A20, Bax Caspase-11 FAP-1, Fas-ligand IEX-1 L, Nr13 Angiogenesis VEGF

Cell proliferation

COX-2, c-myc

Cell cycle

Cyclin D1, P21, GADD 45 Cyclin D2, Cyclin D3

Viruses

HIV-1 EBV wp promoter HBV pregenomic promoter HSV, SV-40 Adenovirus (E3 region) Avian leukosis virus Bovine leukemia virus Cytomegalovirus JC virus, HPV 16, SIV

Proteins involved in antigen presentation

Tapasin LMP2 TAP 1 Complement B Complement receptor 2 Complement component 3

Genes regulated by NF-KB (more)

Kinases

PI3K PIK3 PKC8 MAP 4K1

P450

CYP2C11 CYP2E1

Oxidative stress

XOD GST Mn SOD INOS

Enzymes

γ-GCS 11bGSD2 12-LOX 5-LOX ABC transporters ADH ARFRP1 Aromatase BACE Catepsin B and ceramide glycosyl transferase Collagenase 1 CRAD1 and 2 Dihydrodiol dehydrogenase DT –diaphorase

Enzymes (ctd)

Gelatinase B GSTP1-1 Guanylyl cyclase a H+-K+-ATPase a2 Heparanase HO-1 Hyaluronan synthase lodothyronine deiodinase Lysozyme MKP-1 N-Acethylglucosaminyl transferase 1 NGAL NQ01 PDE 7A1 PGES\L-PGDS Phospholipase A2 Phospholipase C δ1 PIM-1 PTGIS RACK1 REV3 Seprin 2A SNARK TERT Transglutaminase

Miscellaneous

α-1 acid glycoprotein a1-Antitrypsin, a2(1)-Collagen α-Fetprotein AMH Apolipoprotein C III β-Amyloid Biglycan Caveolin-1 Claudin-2 Clone 156 Clone 330 Clone 68 Connexin 32 Epsilon-globin Factor VIII Gadd45B Galectin 3 GIF GS 3686 HMG-14 K15 keratin K3 keratin K3 keratin K6 keratin

Laminin B2 chain mCGM3 Mts1 MUC-2 Mx1 Neutrophil gelatinaseassosiated lipocalin NIF 1 P11 PAI-1 Pax 8 PCBD Perforin PGK PSA RICK S100A6 (calcyclin) Spergen-1 Svndecan-4 TFPI-2 Transferrin Urokin 16 UBE 2M UCP-2 Vimentin Wilms' tumor suppressor gene

Importance of TLR signaling revealed in primary immunodeficiency syndromes

Genetic defect	Inheritance	Typical infections	Autoimmune features	Immunological features
MyD88 dependent				
IRAK4, MyD88	AR	Invasive and recurrent bacterial infections, most commonly Streptococcus pneumoniae, Staphylococcus aureus, and Pseudomonas aeruginosa	None reported	Impaired TLR and IL-1R responses, reduced IgM ⁺ IgD ⁺ CD27 ⁺ B cells, impaired TI IgM
NEMO (IKKγ)	XL	Bacterial, fungal, mycobacterial, and viral infections	Arthritis, hemolytic anemia, inflammatory bowel disease-like colitis	Impaired TLR and IL-1R responses, reduced T cell proliferative responses, impaired TI antibodies
ΙΚΚβ	AR	Bacterial, fungal, and viral infections	None reported	Hypogammaglobulinemia, reduced CD45RO T cells, impaired T cell proliferative responses
ΙκΒα	AD	Recurrent bacterial infections, pneumocystis pneumonia, chronic mucocutaneous candidiasis	Colitis, recurrent diarrhea	Impaired TLR and TNF-α responses, reduced T cells
M-Doo's lange 1				TI antibodies
MyD88 independent TBK1, TLR3, TRAF3, TRIF, UNC93B	AD or AR (TLR3, TRIF) AD (TBK1, TRAF3) AR (UNC93B)	HSV-1 encephalitis	None reported	Impaired TLR3 stimulation of type I interferon

Table 1. PIDs due to genetic defects of NF-KB and TLR signaling

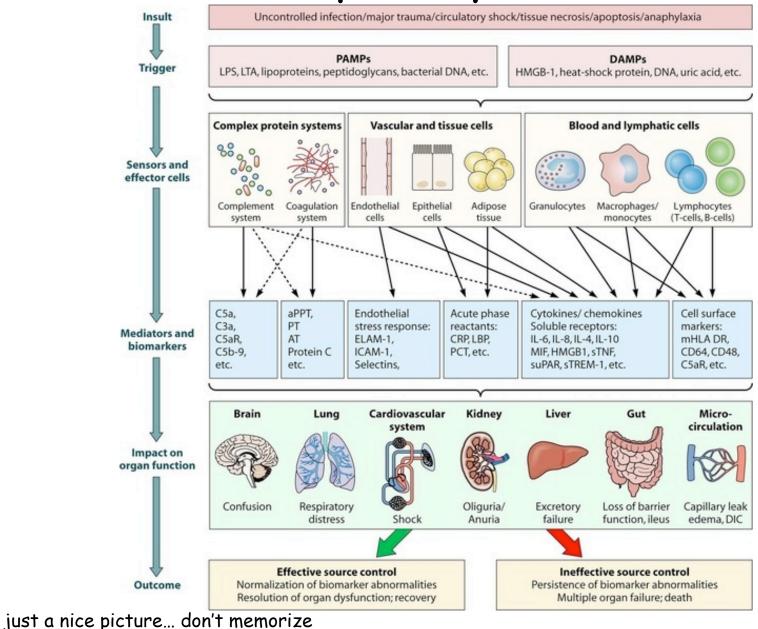
Maglione et al., Annal NY Acad Sci, 1356:1 (2015)

Sepsis Syndrome

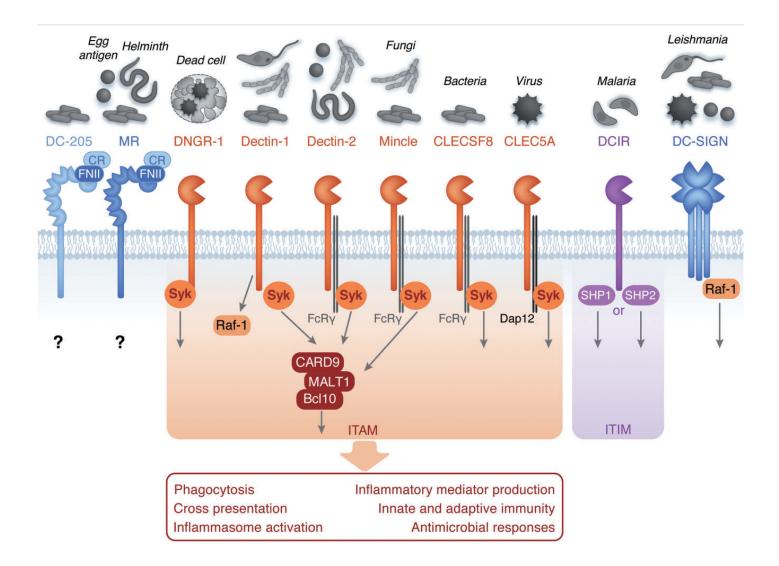
- Bacterial septicemia leads to activation of TLRs on monocytes in the blood
- Systemic release of TNF and IL-1 leads to "inflammation" all over the body
- Often referred to as "cytokine storm" or SIRS
- Shock from loss of blood pressure (vasodilation and leakage of fluid into tissues)
- Damage to lung endothelium \rightarrow ARDS
- Damage to kidney endothelium \rightarrow renal failure
- TLRs also induce coagulation (via tissue factor)
- The combination of effects can lead to multi-organ failure and death
- Can also occur with tumor lysis

Sepsis Syndrome - cytokines

Table I

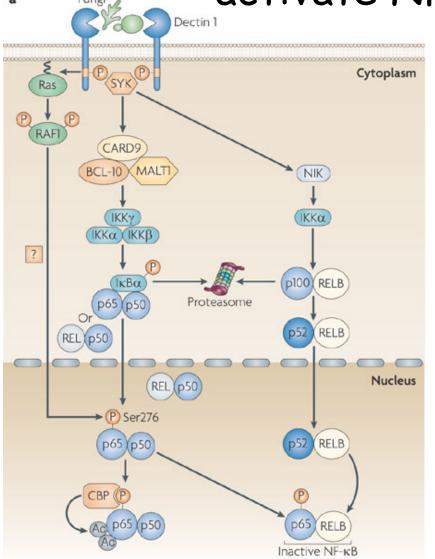

Role of major pro-inflammatory and anti-inflammatory cytokines in sepsis.

Cytokine	Family	Cell origin	Function	Role in sepsis		
Pro-inflammatory						
IL-1β	IL-1	Macrophages, monocytes	Cell proliferation, differentiation, apoptosis	Unknown		
IL-6	IL-6	T-cells, macrophages, endothelial cells	Cell growth, differentiation, cytokine production	Disease severity, mortality, biomarker		
IL-8	CXC	Macrophages, epithelial cells, endothelial cells	Chemotaxis, angiogenesis	Mortality, biomarker		
IL-12	IL-12	Dendritic cells, macrophages, B- cells	IFN- γ production, TNF- α production, Th1 differentiation	Unknown		
IL-17	IL-17	Helper T-cells	Cytokine/chemokine production, anti- tumor immunity, autoimmunity	Controversial		
IL-18	IL-1	Macrophages, monocytes, dendritic cells IFN-γ production, anti-microbial immunity		Disease severity, biomarker		
IFN-γ	IFN	T-Cells, NK cells, NKT cells	Anti-infection, anti-tumor immunity, autoimmunity	Unclear		
GM-CSF	IL-4	T-Cells, macrophages, mast cells, endothelial cells, fibroblasts	Cell growth, survival, granulocyte development, monocyte development, autoimmunity	Unclear		
TNF-a	TNF	Macrophage, CD4 T-cells, NK cells	Cytokine production, cell proliferation, apoptosis, anti-infection, tumor necrosis	Disease progress, survival, biomarker		
Anti-inflammatory						
IL-1Ra	IL-1	Macrophages, monocytes, dendritic cells	IL-1a inhibitor, IL-1 β inhibitor	Unknown		
IL-4	IL-4	T-Cells, mast cells, basophils	Cell proliferation, Th2 differentiation	Unclear		
IL-10	IL-10	Th2 cells, B-cells, monocytes	Potent inhibitor of pro-inflammatory cytokine production	Disease severity, mortality		
IL-11	IL-6	Fibroblasts, neurons, epithelial cells	Induction of Th2 cytokines, inhibition of Th1 cytokine production	Unknown		
IL-13	IL-4	Th2 Cells	Inhibitor of pro-inflammatory cytokine production	Unknown		
TGF-β	TGF-β	Macrophages, T-cells	Proliferation, apoptosis, differentiation, migration, inhibition of pro-inflammatory cytokine production	Unclear		


IL: Interleukin; CD: cluster of differentiation; Th: T helper; IFN: interferon; TNF: tumor necrosis factor; TGF: transforming growth factor; GM-CSF: granulocyte-macrophage colony-stimulating factor; CXC: cysteine X cysteine.

Chaudhry et al., In Vivo, 27:669 (2013)

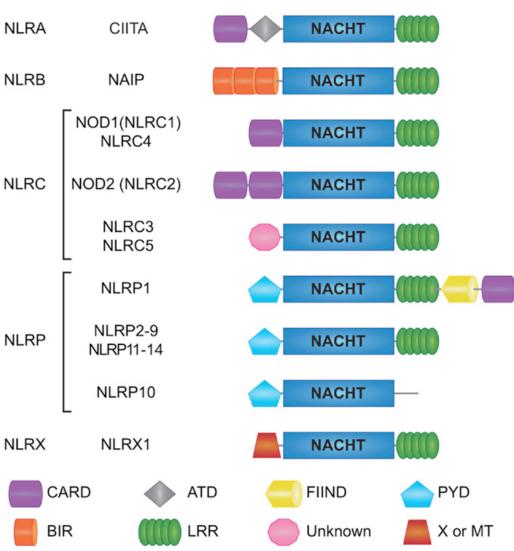
Sepsis Syndrome



Examples of C-type lectin receptors

Hoving et al., Cell Microbiol, 16:185 (2014)

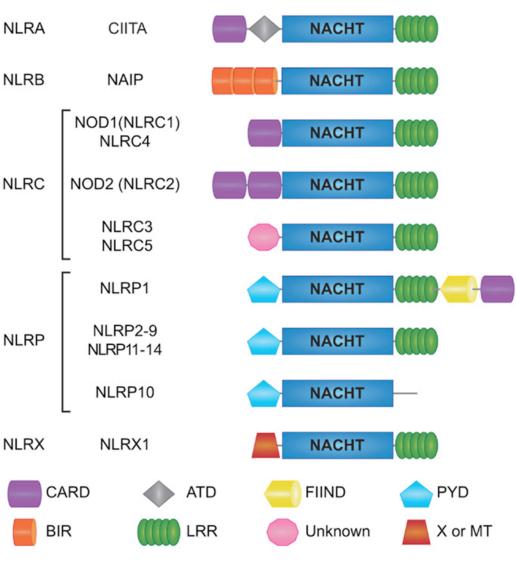
CLR signaling through Syk/Card 9 to activate NF-κB

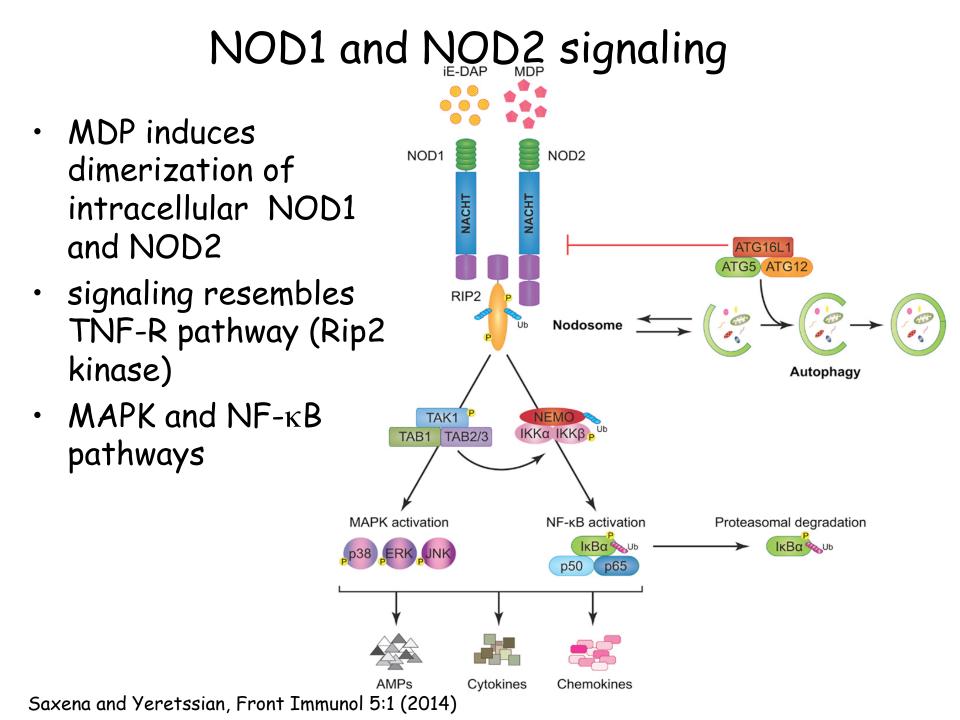

Genetic deficiency of any components of the CLR pathway (dectin-1, CARD9) lead to increased susceptibility to fungal infections.

 Also, various autoimmune disorders (IBD)

Geijenbeek and Gringhuis, Nat Rev Immunol, 9:465 (2009)

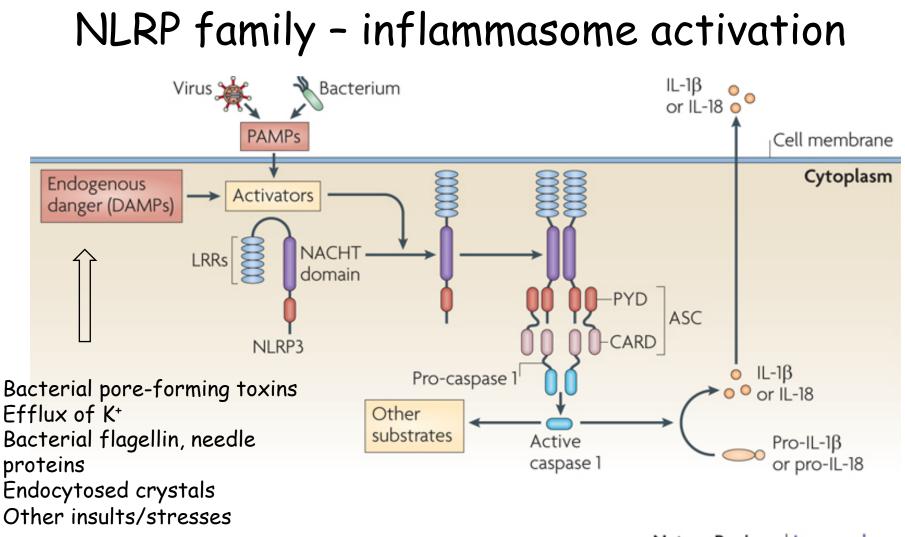
Nod-like receptors (NLRs)


- Nucleotide-binding and oligomerization domain
- Cytosolic
- At least 22 members
- Recognize microbial and intracellular components
- Synergize with TLRs


Saxena and Yeretssian, Front Immunol 5:1 (2014)

Nod-like receptors (NLRs)

- NAIP family, bacterial components such as flagellin
- NLRC family, bacterial components such as MDP, peptidoglycan, iE-DAP
- NLRP family, bacterial components, LPS, toxins, and DAMPs (uric acid) and fibers (asbestos)



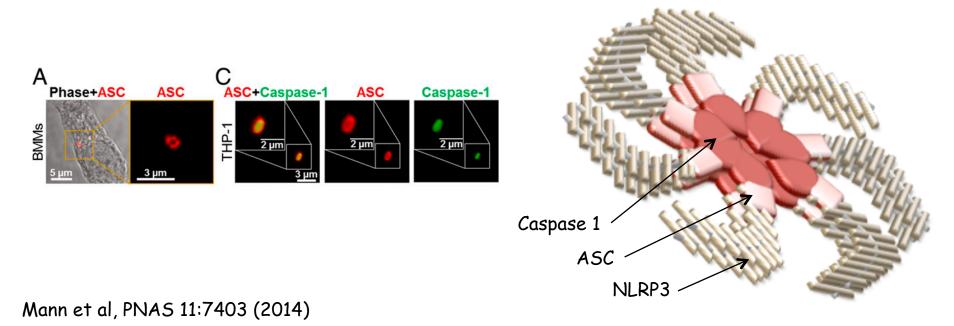
Saxena and Yeretssian, Front Immunol 5:1 (2014)

Common alleles of NOD2 are a genetic risk factor for Crohn's disease

- Several moderately common alleles of the NOD2 gene (7% of total alleles) increase susceptibility to Crohn's disease (a form of inflammatory bowel disease)
- Two copies of these alleles increase susceptibility by 40X
- Evidence that these alleles of are "loss of function" alleles, results in reduced bacterial sensing, increased infections
- NOD1/2 have been shown to have 4 immune functions
 - -activation of inflammatory cytokine gene expression
 - -induction of anti-microbial peptide synthesis by Paneth cells in intestines
 - -activation of inflammasome
 - -autophagy of bacteria in cytoplasm

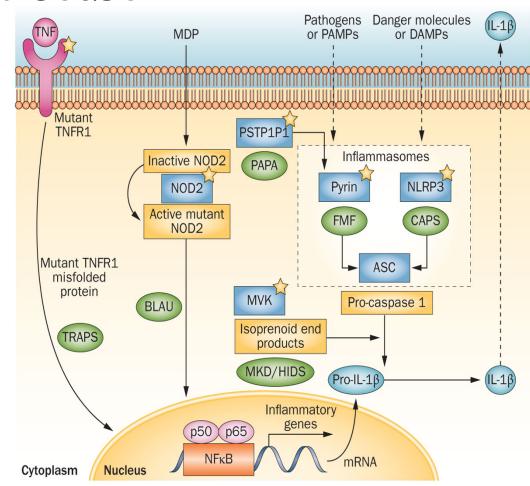
Nature Reviews | Immunology

Tschopp and Schroder, Nat Rev Immunol 10:210 (2010)


IL-1 family of cytokines

Name	New Name	Receptor Co-Recpt	Function	Released with cell death	Activation protease	Expression	Cells acted on
IL-1α	IL-1F1	IL-1R1 IL-1RAcP	pro- inflammatory	Yes	calpain, NE	macs, DCs, endothelium, keratinocyte fibroblasts	DCs, macs, stromal cells (all types)
IL-1β	IL-1F2	IL-1R1 IL-1RAcP	pro- inflammtory	Yes	Caspase 1	monos, macs and DCs (Langerhan)	DCs, macs, neutrophils, stromal cells
IL-1RA	IL-1F3	IL-R1	ANTI- inflammatory	Yes	none	same cells that produce IL-1α and IL-1β	BLOCKS IL-R1 <u>Anakinra</u>
IL-18	IL-F4	IL-18Rα IL-18Rβ	pro- inflammatory	Yes	Caspase 1	monos, macs, intestinal epithelia, skin	Langerhan cells, DCs (migration)
IL-33	IL-1F11	ST2 IL-1RAcP	pro- inflammatory	Yes	Cathepsin G, Caspase 3, 7	Epithelial cells, adipocytes	DCs, to prime Th2 (allergic), macs
IL-36α IL-36β IL-36γ	IL-1F6 IL-1F8 IL-1F9	IL-36R IL-1RAcP	pro- inflammatory	unknown	unknown	monos, macs, epithelial cells	major regulator of skin inflammation
IL-36RA	IL-1F5	IL-36R	ANTI- inflammatory	Yes	none	keratinocytes, kidney, heart, monos, DCs	Blocks binding of IL-36 members
IL-37 IL-38	IL-1F7 IL-1F10	IL-18Rα	ANTI- inflammatory	unknown	none	intestinal epithelia	mainly humans, DCs

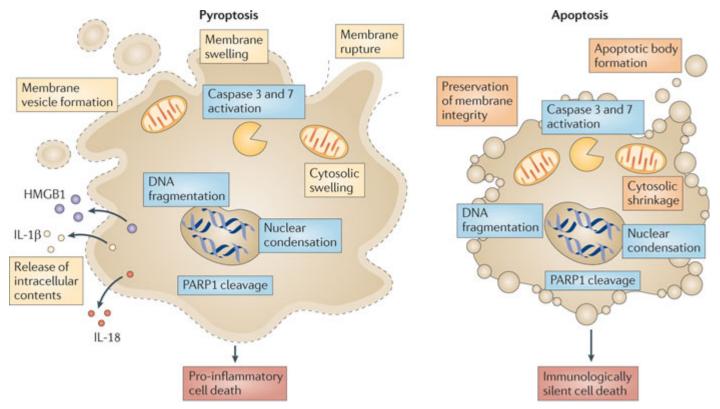
Muñoz-Wolf and Lavelle, FEBs J 285:2377 (2018)


NLRP family - inflammasome activation

- Inflammasome activation requires ASC adapter
- Prior exposure to TLRs or NOD1/NOD2 induce synthesis of pro-IL-1 = priming phase
- Oligomerization activates pro-caspase 1 to active protease for IL-1, IL-18 production

Inflammasome activation in human disease

- Autoinflammatory disorders due to gain of function mutations in NLRP3
- Cryopryrin-associated periodic syndromes (CAPs): Muckle-Wells, FCAS and NOMID
- Autoinflammatory disorders due to gain of function mutations in Pyrin: Familiar Mediterranean Fever (FMF)

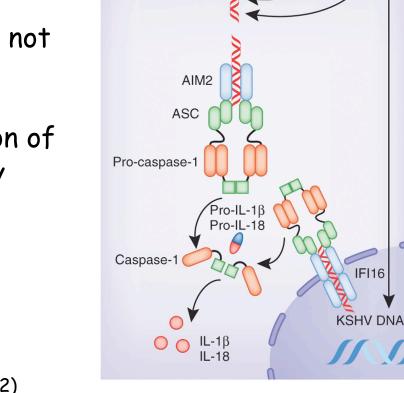


Ozen and Bilginer, Nat Rev Rheumatology 10:7135 (2014)

Inflammasome activation -- caspases

- Cysteine proteases, synthesized as inactive zyomogen, undergo proteolytic activation with inflammasome. Have CARD domain and catalytic domains
- Initiate both IL-1/18 secretion as well as cell death "Pyroptosis"
- Initiator (2, 8, 9, 10) and executioner caspases involved in apoptotic pathways (3, 6, 7)
- Inflammatory caspases (1, 11&12 in mouse or 4&5 in human). Also function as direct intracellular sensors of pathogen molecules → <u>Non-canonical inflammasome</u> <u>activation.</u>

Cell death associated with inflammasome activation



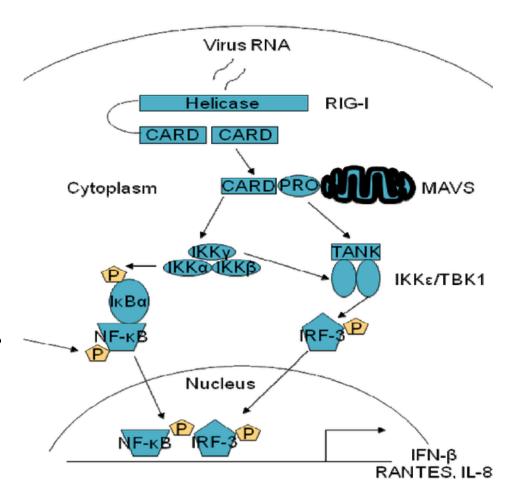
- Pro-inflammatory cell death, release of cytokines (IL-1 α)
- Mechanism to limit intracellular bacterial growth
- Mechanism to remove damaged cells

Lamkanfi, Nat Rev Immunol 11:213 (2011)

AIM2 and IFI16 DNA sensors

- Examples of non-NLR protein that activates inflammasome
- Sensors of intracellular dsDNA molecules
- Recognition based on length not sequence of DNA
- May play a role in recognition of self-dsDNA in autoimmunity

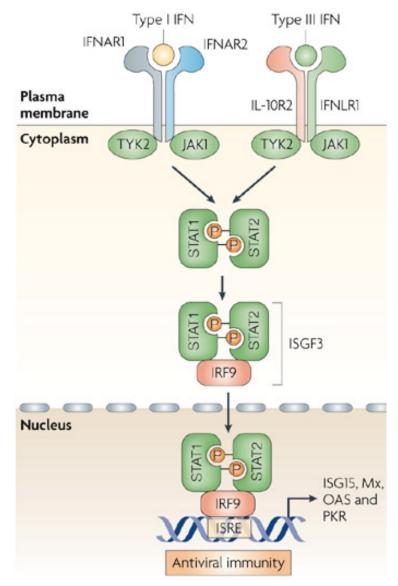
Cytosolic bacteria


DNA viruses

Rathinam, et al., Nat Rev Immunol 13:333 (2012)

RIG-I RNA sensors

- Two major RLRs: RIG-I and MDA5. Have helicase/CARD domain. Widely expressed
- Sense dsRNA in the cytoplasm. Replicative intermediate of various viral pathogens
- RIG-I an MDA5 induce NF-κB and IRF signaling via CARD domain
- Require MAVS (mitochondrial protein) as adapter for signaling



Interferons α/β

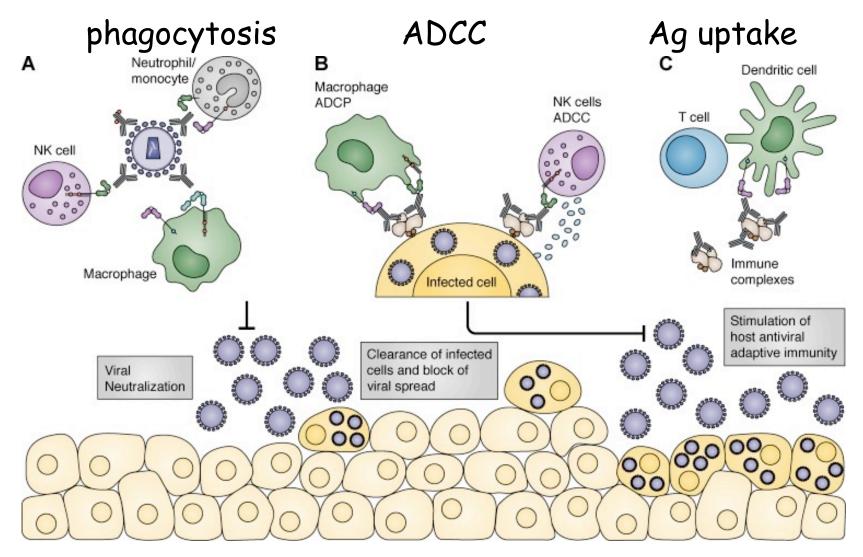
- Type I interferon → signaling through JAK/Stat pathway
- Activate a number of IRFs (interferon response factors)
- Induce transcription of a number of proteins that establish "anti-viral state"
- One infected cell will release type I IFNs to neighboring cells - self amplifying loop
- Type I IFNs implicated in systemic autoimmunity

Sadler and Williams, et al., Nat Rev Immunol 8:559 (2008)

Steps to antiviral immunity

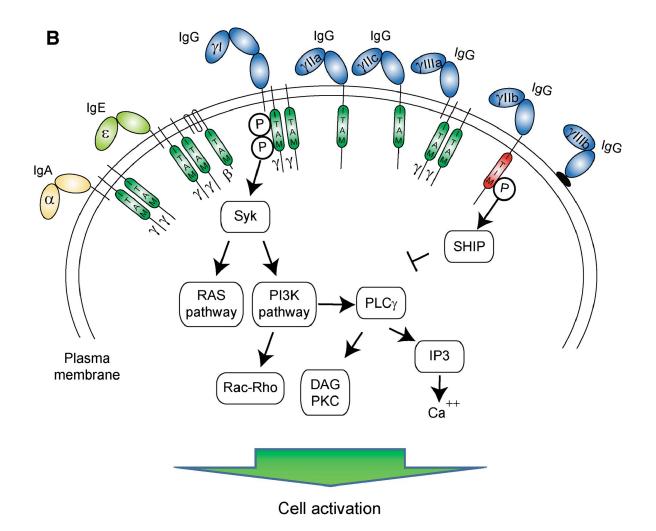
- Upregulation of RNA sensors
- Upregulation
 of PKR →
 blocks viral
 protein
 synthesis
- Upregulation MHC I
- Increase p53 for cell death
- Upregulation of Apobec3
- Upregulation of Mx GTPase

Fc receptors

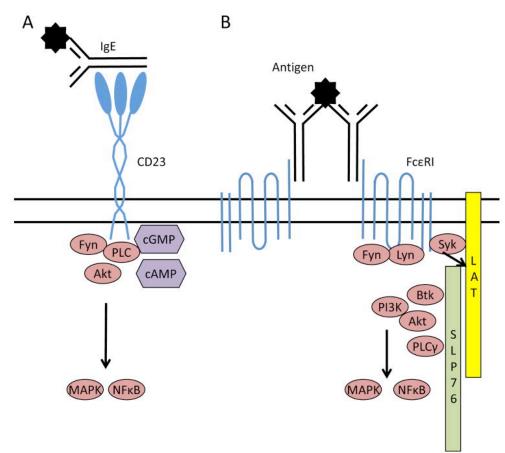

- Recognize Ig bound to particles or antigens
- One Fc for each Ig \rightarrow Fc γ R for IgG, Fc ϵ R for IgE, etc
- Mediate both particle uptake → <u>phagocytosis</u> and activation of innate immune cell function
- Single inhibitory $Fc\gamma R \rightarrow contributor$ to autoimmunity
- Major receptors that mediate efficacy of therapeutic Abs, such as anti-CD20 (rituximab) via ADCC (antibody dependent cellular cytotoxicity)
- Co-operate with other innate immune receptors to amplify signaling

Fcy receptors and human disease

	FcγRIA	FcγRIIA		FcγRIIB		FcγRIIC		FcγRIIIA		FcyRIIIB		
		C	1 ¹³¹		0	13	φ	Ç				106
	FcRy	ITAM		ІТІМ Ц						GPI link		
Alleles		H131	R131	Promoter -386C/ -120A	T232	Q13	stop13	V158	F158	NA1 R36N65A78 D82V106	NA2 S36S65A78 N82I106	SH S36S65D78 N82I106
lgG1	+++	+++	+++	+	+	+	_	+++	++	+++		
lgG2	_	++	+	-	-	-	-	+	_	-		
lgG3	+++	+++	+++	++	++	++	_	+++	+++		+++	
lgG4	+++	+++	++	+	+	+	_	++	-	_		
Expression	Mac, Mono, Neu, DC	Mac, Mono, DC LC, Plt	Neu, Eo,	B cell, Mac Neu, Baso,		Mac, Mono NK cell	o, Neu,	Mac, Mono, NK cell, DC			Neu, Eo, Baso	
Disease association (polymorphisms)	_	GBS ⁽¹²⁾ , Kawasaki disease ⁽¹⁶⁾ , Ulcerative colitis ⁽¹⁷⁾ , Childhood- onset ITP ⁽⁷³⁾	SLE ⁽¹³⁾ , ITP ⁽¹⁴⁾ , IgAN ⁽¹⁵⁾ , APS ⁽⁷⁴⁾	SLE ⁽¹³⁾ (positive association), Lupus nephritis ⁽¹³⁾ (negative association)	SLE ⁽²⁰⁾ , Atopy ⁽⁷⁵⁾	Kawasaki disease ⁽²²⁾		IgAN ⁽¹⁵⁾ ,RA severity ⁽³⁰⁾ , Childhood chronic ITP (73)	SLE ⁽²⁵⁾ , RA ⁽²⁶⁾ , Crohn's disease ⁽²⁷⁾ , Behcet's disease ⁽²⁸⁾ , Severe GBS ⁽²⁹⁾	IPF ⁽³¹⁾ , ANCA- associated disease ⁽³²⁾ , Wegener's granulomat osis ⁽³²⁾		
Disease association (copy number variation)						ITP ⁽²³⁾ , SLE ⁽²⁴⁾		Anti-GBM di Sarcoidosis		Glomerulonephritis ⁽⁹⁾ , SLE ⁽⁹⁾ , systemic sclerosis ⁽⁹⁾ , RA ⁽³³⁾ , IPF ⁽⁷⁷⁾ Sarcoidosis ⁽⁷⁶⁾ , Kawasaki disease ⁽⁷⁾		(³³⁾ , IPF ⁽⁷⁷⁾ ,

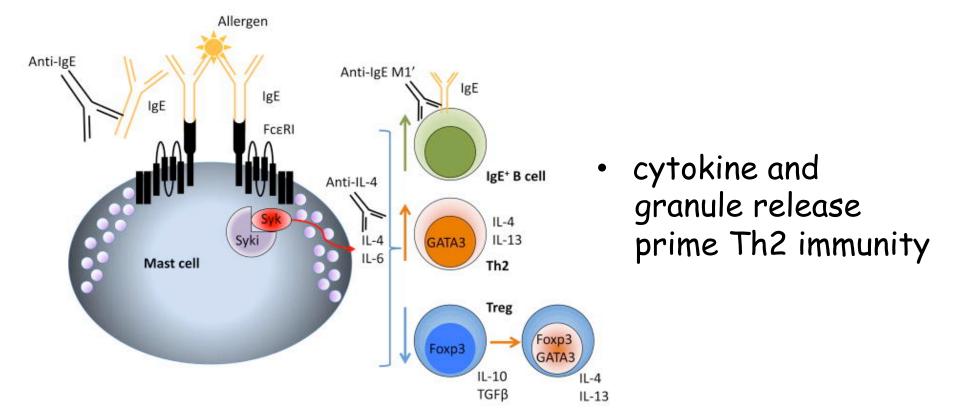

Kaifu and Nakamura, Int Immunol 29:319 (2017)

Effector mechanisms of Fc receptors


Bournazos, Dilillo, <u>Ravetch</u>, J Exp Med 212:1361 (2015)

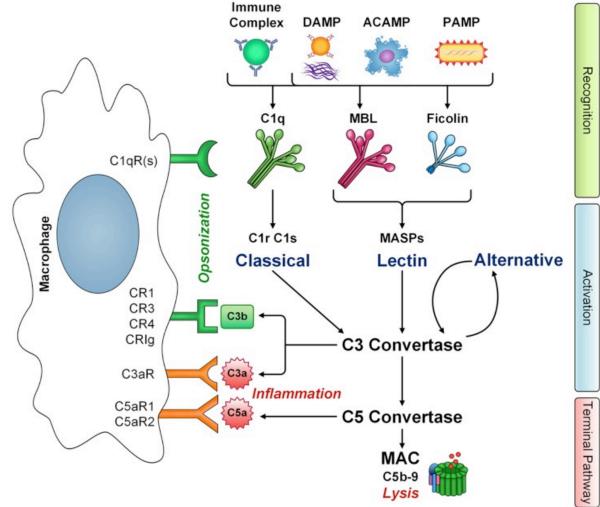
Fc receptors signaling pathways -- similar to C-type lectin receptors

van Egmond, Immunol Rev 268:311 (2015)


Fce receptors - major players in allergy

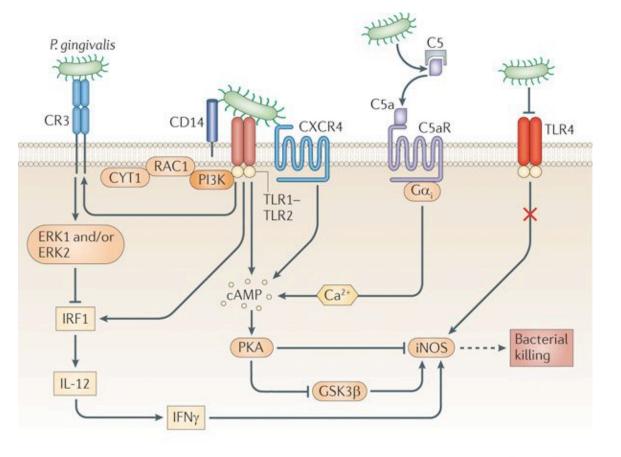
- CD23 -- low affinity
- FceRI -- high affinity
 same signaling path PTK to NF-κB

Oettgen and Burton, Curr Opin Immunol 36:109 (2015)


Fce receptors - major players in allergy

Oettgen and Burton, Curr Opin Immunol 36:109 (2015)

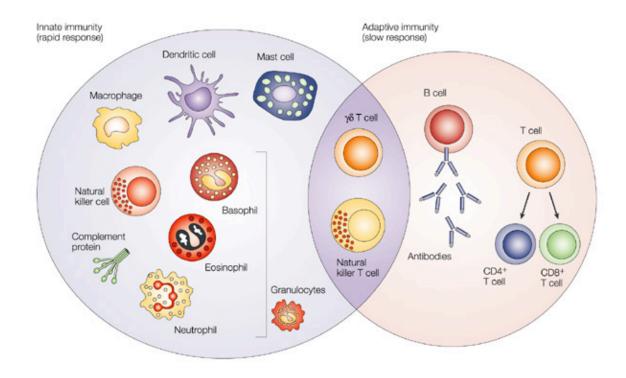
Complement receptors


- Similar to FcRs
- Phagocytosis
- Immune activation
- On many innate cell types

Bohlson et al, Frontiers Immunol 5:402 (2014)

Receptor cross-talk in innate immunity

 Additive effect of multiple pathways



Nature Reviews | Immunology

Hajishengallis and Lambris, Nat Rev Immunol 11:187 (2011)

TOMORROW:

Cellular effectors of innate immunity

