B Cell Activation and the Humoral Immune Response

Micro204 Molecular and Cellular Immunology

Lecturer: Jason Cyster

Vaccine Challenge

- Vaccines are needed that induce broadly neutralizing antibodies against flu and HIV
- How are we going to make them?
- Need to know how B cells see antigen, how they become activated to make antibody, what affects the range of antibodies they make and what ensures a long-lasting response

Questions

- What is the frequency of B cells specific for a typical viral antigen?
- What sets the number of B cells?

BCR

B cell antigen receptor complex

From Abbas, Lichtman, & Pober: Cellular and Molecular Immunology. W.B. Saunders, 1999, Fig. 9-3

Syk kinase is closely related to Zap70 in T cells (has 2 SH2 domains)

Constitutive BCR signaling is necessary for B cell survival

Lam / Rajewsky 1997 Cell

BAFF / Blys and B cell survival

Stromal cell, Mac, DC BAFF B cell **BAFFR BCMATACI** NF κ B (alternative & classical pathways) -> Bcl2, Pim, other

-> Cell Survival

- Member of TNF family
- Made by stromal cells, macrophages, DCs
- BAFF-receptor constitutively expressed on B cells
 - BAFF also binds TACI and BCMA
 - APRIL is a second TACI, BCMA ligand
- Critical role in B cell homeostasis
 - BAFF knockout has ~100x less B cells and is less able to mount antibody responses
 - BAFF over-expression increases total B cell numbers and promotes autoantibody production
 - BAFF serum levels elevated in lupus

BAFF/Blys is necessary for B cell survival

CD21 (Cr2) and CD23 are markers of mature (follicular) B cells CD21^{hi}CD23^{lo} B cells in the spleen are marginal zone (MZ) B cells

from Schiemann et al., Science 293, 2111 (2001)

Questions

 Flu and HIV antigens are heavily glycosylated. Can we make antibodies against carbohydrate antigens? Can we make them against the ones on viruses?

Types of B cell Antigens

Mitogenic means promotes mitosis (proliferation) – clonal expansion

Types of antigen

- T-independent (TI) antigens
 - induce division/differentiation by BCR signaling alone
 - bacterial polysaccharides, repeating surface molecules on viruses
- T-dependent (TD) antigens
 - activate via BCR but depend on additional signals from helper T cells to cause division/differentiation
 - any antigen containing protein
- Most pathogens contain both TI and TD antigens
- Only TD antigens can induce Germinal Center (GC) responses

T-Independent (type II) Responses

Old Paradigm:

T-Dependent Responses

Dendritic Cell (DC) internalizes antigen (Ag), processes into peptides, presents peptides together with MHC molecules to T cells B cell binds Ag via surface Ig, transmits <u>BCR signals</u> and presents peptides to T cells, receives <u>T cell help</u> (growth and differentiation factors) Secretes Antibody (Ab)

Interactions between antigen-specific B and T cells 1 day after Hen Egg Lysozyme (HEL) antigen injection

HEL-specific (Ig-tg) B cells HEL-specific (TCR7 tg) T cells

B cells are antigen-presenting cells

- BCR cross-linking induces antigen internalization to endosomes
- antigen is proteolysed to peptides
- peptides associate with MHC class II
- MHC class II-peptide complexes traffic to surface of B cell
- B cells present antigen recognized by their BCR ~10⁵ times more efficiently than other antigens

B cell antigen presentation and the concept of linked help

Questions

 Do we want the vaccine to drive a T-independent or T-dependent response?

Role of CD40 in B cell activation

increased expression of cell cycle molecules, survival molecules, cytokines, promotes isotype switching

- TCR triggering up-regulates CD40L on T cell
- CD40 signaling promotes B cell activation
- CD40L-deficiency = 'hyper-IgM syndrome' (no isotype switching, no Germinal Centers)
- CD40 signaling also important in DC, Mac function

B-T interaction summary

- BCR signals induce costimulatory molecules (CD86, ICAM1 etc), entry to G1, antigen presentation
- CD40L triggers CD40 -> synergizes with BCR signals to promote mitosis
- T cell derived cytokines promote proliferation, differentiation, isotype switching:
 - IL6 promotes differentiation
 - IL4 -> IgG1, IgE
 - IFN γ -> IgG2a, IgG3
 - TGF β and IL5 -> IgA
- Many other molecules involved in T-B interactions, including:
 - Ly108 (SLAM family) homotypic adhesion molecules and SLAMassociated protein (SAP) promote prolonged B-T interaction essential for GC response
 - ICOSL on GC B -> ICOS on Tfh (essential for GC response)

Questions

 Do viruses promote the B cell response solely be engaging the BCR or can other receptors on the B cell be involved? Which ones?

Innate features of pathogens act as B cell costimulators

- Pathogen multivalency
 - provides a level of BCR crosslinking optimal for activation
- Many pathogens activate TLRs
 - TLR signaling synergizes with BCR signal
- Some induce type I IFNs
 - IFN α/β receptor signaling synergizes with BCR
- Many activate the complement cascade and become C3d coated
 - complement receptor (CR) crosslinking synergizes with BCR signal

TLR signaling in B cells via adaptor Myd88 augments Ab response

VLP – viral-like particle Myd88 – signaling adaptor needed for TLR9 signaling

 Antigen internalized via BCR colocalizes TLR-ligand (CpG DNA) with endosomal TLR9 in B cell -> costimulatory signaling of antigen specific cell

Hou et al., Immunity 2011

Antigen-C3d complexes cross-link BCR and CR2-CD19 -> increase sensitivity to antigen

Dempsey et al. (1996) Science 271, 348 Sensitivity of anti-HEL Ig-transgenic B cells to HEL and HEL-C3d

HEL – hen egg lysozyme (model antigen)

Questions

• Ultimately the vaccine needs to induce plasma cell differentiation. Does it matter what type of plasma cell is induced?

After appropriate activation the B cell differentiates into an antibody secreting cell, also known as a Plasma Cell

Production of membrane vs secreted lg

B cell antibody response - clonal replication enters into a higher order upon plasma cell differentation

(these are just rough numbers)

bacteria - dividing every ~60 min 5 days = 2^{120} divisions = 1.3×10^{36}

Plasma Cells are antibody secreting cells

Two types:

- 1. Plasma cells generated early in the primary response
 - short-lived (~ few days)
 - typically low affinity
 - form in T-independent and T-dependent responses
 - home to red pulp of spleen, medullary cords of lymph nodes
 - IgM but also IgG and other isotypes
- 2. Plasma cells generated later in the primary response and that predominate in secondary responses
 - arise predominantly from germinal centers (in primary) or from memory B cells (in secondary)
 - long-lived (possibly several months)
 - often home to bone marrow, gut, lactating mammary gland
 - predominantly isotype switched

Questions

- Which Ig isotype would be best for an anti-Flu response? Or anti-HIV?
- What is meant by antibody-mediated opsonization? How does this differ from complement-mediated opsonization?

W.B. Saunders Company items and derived items copyright © 2002 by W.B. Saunders Company. SWK 11/2

Neonatal Immunity

- Maternal IgG is transported by the neonatal Fc receptor (FcRn)
 - across the placenta to the fetus
 - from colostrum (first milk) across the gut epithelium
- Confers passive immunity in the newborn
- The duration of protection is 3-4 months (or ~5 IgG half-lives)
 - explains the high incidence of disease after this period by bacteria such as *Haemophilus influenzae*
- Human milk contains IgA
 - provides some protection against gut pathogens
- Neonatal protection is only as good as the titer of IgG (and IgA) in the mother against the specific organism

- FcRn is present in endothelium in the adult where it protects IgG from degradation
- Accounts for the long (3 week) half-life of IgG compared to other Ig isotypes
- Therapeutic agents that are fused to IgG Fc regions take advantage of this property e.g. Enbrel (TNFR-Fc)

Questions

• Why do infants get repeated rounds of a vaccine within months of each other?

Affinity Maturation

- Affinity maturation occurs in germinal centers and is the result of somatic hypermutation of Ig-genes in dividing B cells followed by selection of high affinity B cells by antigen displayed by FDCs
- The high affinity B cells emerging in germinal centers give rise to long-lived plasma cells and memory B cells

Antibody Affinity Maturation

Germinal Center

Germinal Center Organization

Germinal Centers

<u>Function:</u> to generate B cells that produce antibodies with increased affinity for the inducing antigen

=> affinity maturation

Germinal Center Reaction:

Activated B cells give rise to Dark zone cells (centroblasts)

- localize in follicle, undergo rapid cell division and turn on machinery that causes somatic mutation in V-regions

Centroblasts give rise to Light zone cells (centrocytes)

- migrate to the FDC-rich region of the Germinal Center
- survival is dependent on interaction with FDC-bound Ag and presentation of Ag to T cells
- centrocytes that successfully compete to bind antigen (e.g. by having higher affinity BCR) and to receive T cell help are positively selected and may differentiate into long-lived plasma cells or memory B cells

Germinal Center in Human Tonsil

Folliuclar mantle zone (CD23⁺ naive B cells)

GC light zone (CD23⁺⁺ FDC and 'centrocytes')

GC dark zone (Ki67 cell cycle antigen⁺ 'centroblasts')

T zone

from Liu et al., Immunology Today 13, 17-21

Affinity maturation is T-dependent

IgD+ Follicular B cells

CD3ε

(GC B cells are IgD-)

- T follicular helper (Tfh) cells
 - Enriched in GC light zone
 - Make CD40L, IL21, IL4 and/or IFNγ
- Represent ~10% of GC cells

GC B cell migration dynamics (d7)

GC B naive B and T

00:00:00

 $21\mu m z$ -projection

Germinal Center and Follicular Mantle B cell migration

Germinal center B cells Naïve B cells

Selection Model

- GC B cells that have improved affinity capture more antigen in a given amount of time, receiving a stronger BCR signal and presenting more MHCpeptide complexes to GC T cells, outcompeting surrounding B cells for T cell help
- BCR critical for antigen uptake and presentation
- Importance of BCR signal for selection still being determined

Visualizing GC clonal selection using 'confetti' reporter mice

Lymph nodes from Rosa26Confetti/Confetti Mx1-Cre mice (recombination triggered early in life, generating 10 different color combinations), imaged by multiphoton microscopy

Tas et al., Science 2016

Visualizing GC clonal selection using 'confetti' reporter mice

D Day 15 post-tmx (20 post-CGG)

- Tens to hundreds of distinct B cell clones seed each GC
- GCs lose clonal diversity at widely disparate rates
- Efficient affinity maturation can occur in the absence of homogenizing selection

Numbers in parentheses are the normalized dominance score (clonality)

Tas et al., Science 2016

Questions

• Why do we get boosters of some vaccines and not others?

Memory B cells

- Generated during the primary response
 - best characterized for T-dependent responses involving GCs but some may arise independently of (and prior to) the GC response
- Small, recirculating cells
- Often isotype switched (e.g. IgG⁺ or IgA⁺) but some can be IgM+
- Typically have higher affinity for the inducing Ag (carry V-region mutations)
- Longer lived than naïve B cells
 - Persistence of memory B cells after an immune response ensures that we have increased numbers of B cells specific for the antigen and ready to respond on re-encounter
- May have intrinsic differences that promote greater clonal expansion and more rapid differentiation to plasma cells
 - differences in cytoplasmic domains of IgG vs IgM/D
 - upregulation of TLRs

Questions

 How does pre-existing antibody against one part of the virus affect the ability to make antibody against another?

Down-regulation of B cell response by pre-formed IgG

Features of primary and secondary antibody responses

Recommended Reading

Primary papers:

- Tas JM ... Victora GD. (2016) Visualizing antibody affinity maturation in germinal centers. *Science* 351: 1048-54
- Hou B, Saudan P, Ott G, Wheeler ML, Ji M, Kuzmich L, Lee LM, Coffman RL, Bachmann MF, DeFranco AL. (2011) Selective utilization of Toll-like receptor and MyD88 signaling in B cells for enhancement of the antiviral germinal center response. *Immunity* 34:375-84
- Okada T, Miller MJ...Cahalan MD, Cyster JG (2005) Antigen-Engaged B Cells Undergo Chemotaxis toward the T Zone and Form Motile Conjugates with Helper T Cells. *Plos Biol.* 3, e150

Reviews:

- Weisel F, Shlomchik M (2017) Memory B cells of mice and humans. Annu Rev Immunol. 35: 255-284.
- Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM (2015) The generation of antibody-secreting plasma cells. *Nat Rev Immunol.* 15: 160-71.
- Victora GD, Nussenzweig MC (2012) Germinal Centers. Annu Rev Immunol.
- Kurosaki T, Shinohara H, Baba Y (2009) B Cell Signaling and Fate Decision. Annu Rev Immunol.